Skip to main content
Log in

A theoretical study of the H n F4−n Si:N-base (n = 1–4) tetrel-bonded complexes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Tetrel-bonded complexes of H n F4−n Si with a N-base for n = 0–4 were explored by MP2 calculations. Configurations with H–Si···N and F–Si···N linear or nearly linear alignment in complexes were considered. Nine sp 3 hybridized nitrogen bases NH3, NH2Cl, NH2F, NHCl2, NCl3, NFCl2, NHF2, NF2Cl, NF3 and nine sp ones NCNH2, NCCH3, NCOH, NP, NCCl, NCH, NCF, NCCN, N2 have been studied. It is shown that binding energies of the complexes depend strongly on the nature of the base involved in the complex. Complexes with NH3 bases present the highest binding energies. In the stronger complexes, the silicon molecules suffer important geometrical distortions. NBO and AIM methodologies have been applied in order to describe properly the intermolecular Si···N contact. F atoms in equatorial position at silicon acid provoke a deviation from linearity of the Si···N electron density bond path trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lehn J-M (2002) Science (Washington, DC, USA) 295(5564):2400

    Article  CAS  Google Scholar 

  2. Badjic JD, Nelson A, Cantrill SJ, Turnbull WB, Stoddart JF (2005) Acc Chem Res 38(9):723

    Article  CAS  Google Scholar 

  3. Yeagle PL (2014) Biochim Biophys Acta Biomembr 1838(6):1548

    Article  CAS  Google Scholar 

  4. Cerny J, Hobza P (2007) Phys Chem Chem Phys 9(39):5291

    Article  CAS  Google Scholar 

  5. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34(15):1555

    Article  CAS  Google Scholar 

  6. Prins LJ, Reinhoudt DN, Timmerman P (2001) Angew Chem Int Ed 40(13):2382

    Article  CAS  Google Scholar 

  7. Steiner T (2002) Angew Chem Int Ed 41(1):48

    Article  CAS  Google Scholar 

  8. Grabowski SE (2006) Hydrogen bonding—new insights. Challenges and advances in computational chemistry and physics, vol 3. Springer Netherlands, Amsterdam

    Google Scholar 

  9. Singh SK, Das A (2015) Phys Chem Chem Phys 17(15):9596

    Article  CAS  Google Scholar 

  10. Schreiner PR, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Schlecht S, Dahl JEP, Carlson RMK, Fokin AA (2011) Nature (London, UK) 477(7364):308

    Article  CAS  Google Scholar 

  11. Murray JS, Lane P, Politzer P (2009) J Mol Model 15(6):723

    Article  CAS  Google Scholar 

  12. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63(12):1598

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14(8):659

    Article  CAS  Google Scholar 

  14. Politzer P, Murray JS, Clark T (2013) PCCP 15(27):11178

    Article  CAS  Google Scholar 

  15. Azofra LM, Scheiner S (2015) J Chem Phys 142(3):034307

    Article  Google Scholar 

  16. Bauzá A, Mooibroek TJ, Frontera A (2013) Angew Chem Int Ed 52(47):12317

    Article  Google Scholar 

  17. Grabowski SJ (2014) PCCP 16(5):1824

    Article  CAS  Google Scholar 

  18. Del Bene JE, Alkorta I, Elguero J (2015) The pnicogen bond in review: structures, binding energies, bonding properties, and spin–spin coupling constants of complexes stabilized by pnicogen bonds. In: Scheiner S (ed) Noncovalent forces. Challenges and advances in computational chemistry and physics, vol 19. Springer, Berlin. doi:10.1007/978-3-319-14163-3_8

    Google Scholar 

  19. Scheiner S (2013) Acc Chem Res 46(2):280

    Article  CAS  Google Scholar 

  20. Esrafili MD, Mohammadian-Sabet F (2015) Chem Phys Lett 628:71

    Article  CAS  Google Scholar 

  21. Esrafili MD, Mohammadian-Sabet F (2015) J Mol Model 21(3):1

    Google Scholar 

  22. Esrafili MD, Mohammadian-Sabet F (2016) Chem Phys Lett 645:32

    Article  CAS  Google Scholar 

  23. Metrangolo P, Resnati G (2015) Halogen bonding I. Impact on materials chemistry and life sciences. Topics in current chemistry, vol 358. Springer, Berlin

    Google Scholar 

  24. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13(2):305

    Article  CAS  Google Scholar 

  25. Alkorta I, Rozas I, Elguero J (2001) J Phys Chem A 105(4):743

    Article  CAS  Google Scholar 

  26. Ruoff RS, Emilsson T, Jaman AI, Germann TC, Gutowsky HS (1992) J Chem Phys 96(5):3441

    Article  CAS  Google Scholar 

  27. Urban RD, Rouillé G, Takami M (1997) J Mol Struct 413:511

    Article  Google Scholar 

  28. Alkorta I, Elguero J, Fruchier A, Macquarrie DJ, Virgili A (2001) J Organomet Chem 625(2):148

    Article  CAS  Google Scholar 

  29. Rossi AR, Jasinski JM (1990) Chem Phys Lett 169(5):399

    Article  CAS  Google Scholar 

  30. Yamamura M, Kano N, Kawashima T, Matsumoto T, Harada J, Ogawa K (2008) J Org Chem 73(21):8244

    Article  CAS  Google Scholar 

  31. Hagemann M, Berger RJF, Hayes SA, Stammler H-G, Mitzel NW (2008) Chem A Eur J 14(35):11027

    Article  CAS  Google Scholar 

  32. Vojinović K, McLachlan LJ, Hinchley SL, Rankin DWH, Mitzel NW (2004) Chem A Eur J 10(12):3033

    Article  Google Scholar 

  33. Marín-Luna M, Alkorta I, Elguero J (2015) J Organomet Chem 794:206

    Article  Google Scholar 

  34. Korlyukov AA, Lyssenko KA, Antipin MY, Kirin VN, Chernyshev EA, Knyazev SP (2002) Inorg Chem 41(20):5043

    Article  CAS  Google Scholar 

  35. Marin-Luna M, Alkorta I, Elguero J (2016) J Phys Chem A 120(4):648

    Article  CAS  Google Scholar 

  36. Esrafili MD, Mohammadirad N, Solimannejad M (2015) Chem Phys Lett 628:16

    Article  CAS  Google Scholar 

  37. Del Bene JE, Alkorta I, Elguero J (2015) J Phys Chem A 119(22):5853

    Article  Google Scholar 

  38. Bene JED, Alkorta I, Elguero J (2015) J Phys Chem A 119(12):3125

    Article  Google Scholar 

  39. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian IWC. Gaussian-09, Revision A.01

  40. Møller C, Plesset MS (1934) Phys Rev 46(7):618

    Article  Google Scholar 

  41. Papajak E, Zheng J, Xu X, Leverentz HR, Truhlar DG (2011) J Chem Theory Comput 7(10):3027

    Article  CAS  Google Scholar 

  42. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96(9):6796

    Article  CAS  Google Scholar 

  43. Lu T, Chen F (2012) J Comput Chem 33(5):580

    Article  Google Scholar 

  44. Jmol (2013) An open-source java viewer for chemical structures in 3D vhwjoaS

  45. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  46. Popelier PL (2000) Atoms in molecules: an introduction. Prentice Hall, London

    Book  Google Scholar 

  47. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules: from solid state to DNA and drug design. WILEY-VCH, Weinham

  48. AIMAll (Version 14.11.23) TAK, TK Gristmill Software, Overland Park KS, USA, 2014 (aim.tkgristmill.com)

  49. Glendening ED, Landis CR, Weinhold F (2013) NBO 6.0: natural bond orbital analysis program. J Comput Chem 34(16):1429–1437

  50. Murray JS, Concha MC, Politzer P (2011) J Mol Model 17(9):2151

    Article  CAS  Google Scholar 

  51. Politzer P, Murray JS, Clark T (2015) J Mol Model 21(3):52

    Article  Google Scholar 

  52. Knop O, Boyd RJ, Choi SC (1988) J Am Chem Soc 110(22):7299

    Article  CAS  Google Scholar 

  53. Gibbs GV, Hill FC, Boisen MB, Downs RT (1998) Phys Chem Miner 25(8):585

    Article  CAS  Google Scholar 

  54. Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117(12):5529

    Article  CAS  Google Scholar 

  55. Alkorta I, Barrios L, Rozas I, Elguero J (2000) THEOCHEM 496(1–3):131

    Article  CAS  Google Scholar 

  56. Knop O, Rankin KN, Boyd RJ (2001) J Phys Chem A 105(26):6552

    Article  CAS  Google Scholar 

  57. Mata I, Molins E, Alkorta I, Espinosa E (2007) J Phys Chem A 111(28):6425

    Article  CAS  Google Scholar 

  58. Mata I, Alkorta I, Molins E, Espinosa E (2010) Chem A Eur J 16(8):2442

    Article  CAS  Google Scholar 

  59. Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122(45):11154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with financial support from the Ministerio de Economía y Competitividad (Project No. CTQ2015-63997-C2-2-P) and Comunidad Autónoma de Madrid (Project FOTOCARBON, ref S2013/MIT-2841). Computer, storage and other resources from the CTI (CSIC) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Marín-Luna or Ibon Alkorta.

Additional information

Published as part of the special collection of articles derived from the 10th Congress on Electronic Structure: Principles and Applications (ESPA-2016).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marín-Luna, M., Alkorta, I. & Elguero, J. A theoretical study of the H n F4−n Si:N-base (n = 1–4) tetrel-bonded complexes. Theor Chem Acc 136, 41 (2017). https://doi.org/10.1007/s00214-017-2069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2069-z

Keywords

Navigation