Skip to main content
Log in

Examination of the performance of semiempirical methods in QM/MM studies of the SN2-like reaction of an adenylyl group transfer catalysed by ANT4′

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Quantum mechanical (QM) semiempirical methods (SMs), combined with molecular mechanics (MM) force fields, are extensively used in theoretical studies of enzymatic reactions. Despite being several orders of magnitude faster than ab initio methods, their correctness is essential to be used in calculations requiring statistical simulations. Herein, a wide range of SMs are examined, from those based on s and p orbitals, sp-SMs (MNDO, AM1, PM3 and RM1), to those including d orbitals, spd-SMs, either based on approximations to the Hartree–Fock theory (MNDO/d, PM6 and AM1/d-PhoT) or derived from density functional theory (DFTB3). These QM Hamiltonians are used within a multiscale QM/MM additive scheme, to clarify their usefulness in mechanistic studies of phosphoryl-transfer reactions. The SN2-like reaction of the adenylyl group transfer catalysed by 4′-O-Nucleotidyltransferase (ANT4′) was selected as a benchmark. Geometrical characteristics of stationary structures, the shape of potential energy surfaces together with the barrier heights and kinetic isotope effects (KIEs), obtained with the different SMs/MM methods were compared with results obtained at higher M06-2X/MM level of theory. Critical limitations of the sp-SMs in the present mechanistic study were detected. The spd-SMs describe the reaction as a concerted process, same as the reference method M06-2X, but none of them is free of limitations. PM6 reproduces the biased trend of previous sp-SMs stabilizing structures of phosphorous atoms with certain pentavalent character, while AM1/d-PhoT and DFTB3 describe TSs more dissociative than M06-2X, which determines the lower quality of the computed primary and secondary 16O/18O KIEs. Efforts to improve the SMs can be guided by the exposure of their limitations, which were supported by the results of a second studied phosphoryl-transfer reactions; the hydrolysis of phosphodiester bond at the 3′-end of the viral DNA (vDNA). Thus, for instance, further increases in SMs accuracy can be achieved by improving the training and survey reference data sets, a more complete set of parameters for describing intermolecular interactions or further developments of spd-SMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3

Similar content being viewed by others

References

  1. Masgrau L, Truhlar DG (2015) Acc Chem Res 48:431–438

    Article  CAS  PubMed  Google Scholar 

  2. Świderek K, Tuñón I, Moliner V (2014) WIREs Comput Mol Sci 4:407–421

    Article  CAS  Google Scholar 

  3. Świderek K, Ruiz-Pernía JJ, Moliner V, Tuñón I (2014) Curr Opin Chem Biol 21:11–18

    Article  CAS  PubMed  Google Scholar 

  4. Mlyńsky V, Banaś P, Šponer J, van der Kamp MW, Mulholland AJ, Otyepka M (2014) J Chem Theory Comput 10:1608–1622

    Article  CAS  PubMed  Google Scholar 

  5. Krzemińska A, Moliner V, Świderek K (2016) J Am Chem Soc 138:16283–16298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Higashi M, Truhlar DG (2009) J Chem Theory Comput 5:2925–2929

    Article  CAS  PubMed  Google Scholar 

  7. Singh UC, Kollman PA (1986) J Comput Chem 7:718–730

    Article  CAS  Google Scholar 

  8. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  PubMed  Google Scholar 

  9. Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2008) J Am Chem Soc 130:2894–2895

    Article  CAS  PubMed  Google Scholar 

  10. Martí S, Andrés J, Moliner V, Silla E, Tuñón I, Bertrán J (2009) J Am Chem Soc 131:16156–16161

    Article  CAS  PubMed  Google Scholar 

  11. Świderek K, Tuñón I, Williams IH, Moliner V (2018) J Am Chem Soc 140:4327–4334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Świderek K, Martí S, Moliner V (2014) ACS Catal 4:426–434

    Article  CAS  Google Scholar 

  13. Świderek K, Tuñón I, Martí S, Moliner V (2015) ACS Catal 5:1172–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Doron D, Major DT, Kohen A, Thiel W, Wu X (2011) J Chem Theory Comput 7:3420–3437

    Article  CAS  PubMed  Google Scholar 

  15. Vardi-Kilshtain A, Major DT, Kohen A, Engel H, Doron D (2012) J Chem Theory Comput 8:4786–4796

    Article  CAS  PubMed  Google Scholar 

  16. Major DT, Nam K, Gao J (2006) J Am Chem Soc 128:8114–8115

    Article  CAS  PubMed  Google Scholar 

  17. Liu CT, Layfield JP, Stewart RJ III, French JB, Hanoian P, Asbury JB, Hammes-Schiffer S, Benkovic SJ (2014) J Am Chem Soc 136:10349–10360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Świderek K, Arafet K, Kohen A, Moliner V (2017) J Chem Theory Comput 13:1375–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopez-Canut V, Roca M, Bertran J, Moliner V, Tuñón I (2011) J Am Chem Soc 133:12050–12062

    Article  CAS  PubMed  Google Scholar 

  20. Christensen AS, Kubař T, Cui Q, Elstner M (2016) Chem Rev 116:5301–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrovic D, Szeler K, Kamerlin SCL (2018) Chem Commun 54:3077–3089

    Article  CAS  Google Scholar 

  22. Bordes I, García-Junceda E, Sánchez-Moreno I, Castillo R, Moliner V (2017) Int J Quantum Chem 118:e25520

    Article  CAS  Google Scholar 

  23. Lopez-Canut V, Roca M, Bertran J, Moliner V, Tuñón I (2010) J Am Chem Soc 132:6955–6963

    Article  CAS  PubMed  Google Scholar 

  24. Nam K, Cui Q, Gao J, York DM (2007) J Chem Theory Comput 3:486–504

    Article  CAS  PubMed  Google Scholar 

  25. Arantes GM, Loos M (2006) Phys Chem Chem Phys 8:347–353

    Article  PubMed  Google Scholar 

  26. Lopez X, York DM (2001) Theo Chem Acc 109:149–159

    Article  CAS  Google Scholar 

  27. Yang Y, Yu H, York D, Elstner M, Cui Q (2008) J Chem Theory Comput 4:2067–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcos E, Anglada JM, Crehuet R (2008) Phys Chem Chem Phys 10:2442–2450

    Article  CAS  PubMed  Google Scholar 

  29. Marcos E, Field MJ, Crehuet R (2010) Proteins 78:2405–2411

    CAS  PubMed  Google Scholar 

  30. Murillo-López J, Zinovjev K, Pereira H, Caniuguir A, Garratt R, Babul J, Recabarren R, Alzate-Morales J, Caballero J, Tuñón I, Cabrera R (2019) Chem Sci 10:2882–2892

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907

    Article  CAS  Google Scholar 

  32. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  33. Stewart JJP (1989) J Comput Chem 10:209–221

    Article  CAS  Google Scholar 

  34. Rocha GB, Oliveira Freire R, Simas AM, Stewart JJP (2006) J Comput Chem 27:1101–1111

    Article  CAS  PubMed  Google Scholar 

  35. Thiel W, Voityuk AA (1992) Theor Chim Acta 81:391–404

    Article  CAS  Google Scholar 

  36. Thiel W, Voityuk AA (1996) J Phys Chem 100:616–626

    Article  CAS  Google Scholar 

  37. Bernal-Uruchurtu MI, Martins-Costa MTC, Millot C, Ruiz-López MF (2000) J Comput Chem 21:572–581

    Article  CAS  Google Scholar 

  38. Bernal-Uruchurtu MI, Ruiz-López MF (2000) Chem Phys Lett 330:118–124

    Article  CAS  Google Scholar 

  39. Harb W, Bernal-Uruchurtu MI, Ruiz-López MF (2004) Theor Chem Acc 112:204–216

    Article  CAS  Google Scholar 

  40. Arillo-Flores OI, Ruiz-López MF, Bernal-Uruchurtu MI (2007) Theor Chem Acc 118:425–435

    Article  CAS  Google Scholar 

  41. Stewart JJP (2007) J Mol Model 13:1173–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Stewart JJP (2009) J Mol Model 15:765–805

    Article  CAS  PubMed  Google Scholar 

  43. Marion A, Monard G, Ruiz-López MF, Ingrosso F (2014) J Chem Phys 141:034106

    Article  CAS  PubMed  Google Scholar 

  44. Imhof P, Noé F, Fischer S, Smith JC (2006) J Chem Theory Comput 2:1050–1056

    Article  CAS  PubMed  Google Scholar 

  45. Wahiduzzaman M, Oliveira AF, Philipsen P, Zhechkov L, van Lenthe E, Witek H, Heine T (2013) J Chem Theory Comput 9:4006–4017

    Article  CAS  PubMed  Google Scholar 

  46. Gaus M, Lu X, Elstner M, Cui Q (2014) J Chem T Theory Comput 10:1518–1537

    Article  CAS  Google Scholar 

  47. Gaus M, Goez A, Elstner M (2013) J Chem Theory Comput 9:338–354

    Article  CAS  PubMed  Google Scholar 

  48. Gaus M, Cui Q (2012) Elstner. J Chem Theory Comput 7:931–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Editorial (2013) The antibiotic alarm. Nature 495:141

    Google Scholar 

  50. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F et al (2015) Nat Rev Microbiol 13:310–317

    Article  CAS  PubMed  Google Scholar 

  51. Becker B, Matthew A (2013) ACS Chem Biol 8:105–115

    Article  CAS  PubMed  Google Scholar 

  52. Martí S, Bastida A, Świderek K (2019) Front Chem 6:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157–167

    Article  CAS  PubMed  Google Scholar 

  54. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  55. Bordes I, Ruiz-Pernía JJ, Castillo R, Moliner V (2015) Org Biomol Chem 13:10179–10190

    Article  CAS  PubMed  Google Scholar 

  56. Bordes I, Castillo R, Moliner V (2017) J Phys Chem B 121:8878–8892

    Article  CAS  PubMed  Google Scholar 

  57. Pedersen LC, Benning MM, Holden HM (1995) Biochemistry 34:13305–13311

    Article  CAS  PubMed  Google Scholar 

  58. Olsson MHM, Sondergaard CR, Rostkowski M, Jensen JH (2011) J Chem Theory Comput 7:525–537

    Article  CAS  PubMed  Google Scholar 

  59. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Kollman P et al (2003) J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  60. Field MJ, Albe M, Bret C, Proust-De Martin F, Thomas A (2000) J Comput Chem 21:1088–1100

    Article  CAS  Google Scholar 

  61. Krzemińska A, Paneth P, Moliner V, Świderek K (2015) J Phys Chem B 119:917–927

    Article  CAS  PubMed  Google Scholar 

  62. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  63. Stewart JJP (1996) Quantum Chem Progr Exch 455:6

    Google Scholar 

  64. Case DA, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, Kollman PA (2016) AMBER 2016. University of California, San Francisco

    Google Scholar 

  65. Byrd RH, Lu P, Nocedal J, Zhu C (1995) J Sci Comput 16:1190–1208

    Google Scholar 

  66. Baker J, Kessi A, Delley BJ (1996) Chem Phys 105:192–212

    CAS  Google Scholar 

  67. Baker J (1997) J Comput Chem 18:1079–1095

    Article  CAS  Google Scholar 

  68. Martí S, Moliner V, Tuñón I, Williams IH (2005) J Phys Chem B 109:3707–3710

    Article  CAS  PubMed  Google Scholar 

  69. Martí S, Moliner V, Tuñón I (2005) J Chem Theory Comput 1:1008–1016

    Article  CAS  PubMed  Google Scholar 

  70. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  71. Świderek K, Martí S, Tuñón I, Moliner V, Bertran J (2015) J Am Chem Soc 137:12024–12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tubert-Brohman I, Guimaraes CRW, Jorgensen WL (2005) J Chem Theory Comput 1:817–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lopez X, York DM (2003) Theor Chem Acc 109:149–159

    Article  CAS  Google Scholar 

  74. Gregersen BA, Lopez X, York DM (2003) J Am Chem Soc 125:7178–7179

    Article  CAS  PubMed  Google Scholar 

  75. Gregersen BA, Lopez X, York DM (2004) J Am Chem Soc 126:7504–7513

    Article  CAS  PubMed  Google Scholar 

  76. Jencks WP (1985) Chem Rev 85:511–527

    Article  CAS  Google Scholar 

  77. O’Ferrall RM (1970) J Chem Soc B 274–277

  78. Gaus M, Lu X, Elstner M, Cui Q (2014) J Chem Theor Comput 10:1518–1537

    Article  CAS  Google Scholar 

  79. Turner JA, Moliner V, Williams IH (1999) Phys Chem Chem Phys 1:1323–1331

    Article  CAS  Google Scholar 

  80. Ferrer S, Tuñón I, Martí S, Moliner V, García-Viloca M, González-Lafont A, Lluch JM (2006) J Am Chem Soc 128:16851–16863

    Article  CAS  PubMed  Google Scholar 

  81. Xue Q, Yeung ES (1995) Nature 373:681–683

    Article  CAS  PubMed  Google Scholar 

  82. Gerratana B, Cleland WW, Reinhardt LA (2001) Biochemistry 40:2964–2971

    Article  CAS  PubMed  Google Scholar 

  83. Kaminski S, Gaus M, Elstner M (2012) J Phys Chem A 116:11927–11937

    Article  CAS  PubMed  Google Scholar 

  84. Kaminski S, Giese TJ, Gaus M, York DM, Elstner M (2012) J Phys Chem A 116:9131–9141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Krzemińska A, Świderek K (2019) J Chem Inf Model 59:2995–3005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Ciencia, Innovación y Universidades (Grant PGC2018-094852-B-C21), Universitat Jaume I (Project UJI B2017- 31). KŚ thanks the MINECO for a Juan de la Cierva—Incorporación (Ref. IJCI-2016-27503) contract. Authors acknowledge computational resources from the Servei d’Informàtica of Universitat Jaume I.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vicent Moliner or Katarzyna Świderek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the 11th Congress on Electronic Structure: Principles and Applications (ESPA-2018).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martí, S., Moliner, V. & Świderek, K. Examination of the performance of semiempirical methods in QM/MM studies of the SN2-like reaction of an adenylyl group transfer catalysed by ANT4′. Theor Chem Acc 138, 120 (2019). https://doi.org/10.1007/s00214-019-2507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2507-1

Keywords

Navigation