Skip to main content

Advertisement

Log in

DFT performance in the IQA energy partition of small water clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This paper addresses an assessment of the performance of a large set of exchange-correlation functionals in the description of hydrogen bonding within the interacting quantum atoms (IQA) energy partition. Specifically, we performed IQA analyses over a series of small water clusters \((\hbox {H}_{2}\hbox {O})_{{n}}\) with \(n \le 6\). Apart from LDA-like approximations, all the considered families of exchange-correlation functionals (GGA, meta-GGA, and hybrid) reproduce the trends associated with hydrogen bond non-additive effects computed with reference Møller–Plesset and coupled cluster wave functions. In other words, the IQA energy partition together with most of the functionals addressed herein produce good results concerning the study of non-additivity in hydrogen bonds at a reduced cost as compared with correlated wave functions approximations. These conditions might be further exploited in the examination of larger hydrogen-bonded complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Becke AD (2014) J Chem Phys 140:18A301

    PubMed  Google Scholar 

  2. Yu HS, Li SL, Truhlar DG (2016) J Chem Phys 145:130901

    PubMed  Google Scholar 

  3. Galindo-Murillo R, Sandoval-Salinas ME, Barroso-Flores J (2014) J Chem Theory Comput 10:825–834

    CAS  PubMed  Google Scholar 

  4. Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289–320

    CAS  PubMed  Google Scholar 

  5. Lupp D, Christensen NJ, Dethlefsen JR, Fristrup P (2015) Chem Eur J 21:3435–3442

    CAS  PubMed  Google Scholar 

  6. Geerlings P, De Proft F (2008) Phys Chem Chem Phys 10:3028–3042

    CAS  PubMed  Google Scholar 

  7. Miranda-Quintana RA, Ayers PW (2019) Theor Chem Acc 138:44

    Google Scholar 

  8. Franco-Pérez M, Polanco-Ramírez CA, Gázquez JL, Ayers PW (2018) J Mol Model 24:285

    PubMed  Google Scholar 

  9. Cortés-Guzmán F, Bader R (2005) Coord Chem Rev 249:633–662

    Google Scholar 

  10. Romero-Montalvo E, Guevara-Vela JM, Narváez WE, Costales A, Martín Pendá A, Hernández-Rodríguez M, Rocha-Rinza T (2017) Chem Commun 53:3516–3519

    CAS  Google Scholar 

  11. Bader RFW, Beddall PM (1972) J Chem Phys 56:3320–3329

    CAS  Google Scholar 

  12. Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403

    CAS  Google Scholar 

  13. Gatti C, Cargnoni F, Bertini L (2003) J Comput Chem 24:422–436

    CAS  PubMed  Google Scholar 

  14. Popelier PLA (2016) Applications of topological methods in molecular chemistry. Springer, Berlin

    Google Scholar 

  15. Blanco MÁ, Pendás Á Martín, Francisco E (2005) J Chem Theory Comput 1:1096–1109

    CAS  PubMed  Google Scholar 

  16. Francisco E, Martín Pendás Á, Blanco MÁ (2006) J Chem Theory Comput 2:90–102

    CAS  PubMed  Google Scholar 

  17. Maxwell P, Martín Pendás Á, Popelier PLA (2016) Phys Chem Chem Phys 18:20986–21000

    CAS  PubMed  Google Scholar 

  18. Francisco E, Casals-Sainz JL, Rocha-Rinza T, Martín Pendás Á (2016) Theor Chem Acc 135:170

    Google Scholar 

  19. Guevara-Vela J, Chávez-Calvillo R, García-Revilla M, Hernández-Trujillo J, Christiansen O, Francisco E, MartínPendás Á, Rocha-Rinza T (2013) Chem Eur J 19:14304–14315

    CAS  PubMed  Google Scholar 

  20. Guevara-Vela J, Romero-Montalvo E, Mora Gómez V, Chávez-Calvillo R, García-Revilla M, Francisco E, Martín Pendás Á, Rocha-Rinza T (2016) Phys Chem Chem Phys 18:19557–19566

    CAS  PubMed  Google Scholar 

  21. Ugalde JM, Alkorta I, Elguero J (2000) Angew Chem Int Ed 39:717–721

    CAS  Google Scholar 

  22. Gillan MJ, Alfè D, Michaelides A (2016) J Chem Phys 144:130901

    PubMed  Google Scholar 

  23. Medvedev MG, Bushmarinov IS, Sun J, Perdew JP, Lyssenko KA (2017) Science 355:49–52

    CAS  PubMed  Google Scholar 

  24. Bader R (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  25. Segarra-Martí J, Merchan M, Roca-Sanjuan D (2012) J Chem Phys 136:244306

    PubMed  Google Scholar 

  26. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    CAS  Google Scholar 

  27. Becke AD (1997) J Chem Phys 107:8554–8560

    CAS  Google Scholar 

  28. Becke AD (1988) J Chem Phys 88:2547

    CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    CAS  Google Scholar 

  30. Perdew JP (1986) Phys Rev B 33:8822–8824

    CAS  Google Scholar 

  31. Handy NA, Cohen AJ (2001) Mol Phys 99:403–412

    CAS  Google Scholar 

  32. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    CAS  PubMed  Google Scholar 

  33. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    CAS  Google Scholar 

  35. Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

    PubMed  Google Scholar 

  36. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    CAS  Google Scholar 

  37. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101

    PubMed  Google Scholar 

  38. Zhao Y, Truhlar DG (2006) J Phys Chem A 110:13126–13130

    CAS  PubMed  Google Scholar 

  39. Peverati R, Truhlar DG (2012) J Phys Chem Lett 3:117–124

    CAS  Google Scholar 

  40. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    CAS  Google Scholar 

  41. Sun Q, Berkelbach TC, Blunt NS, Booth GH, Guo S, Li Z, Liu J, McClain JD, Sayfutyarova ER, Sharma S, Wouters S, Chan GK-L (2018) Wiley Interdiscip Rev Comput Mol Sci 8:e1340

    Google Scholar 

  42. Martín Pendás Á, Francisco E. Promolden. A QTAIM/IQA code (unpublished)

  43. Hunter JD (2007) Comput Sci Eng 9:90–95

    Google Scholar 

  44. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) J Cheminform 4:17

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Müller A (1984) Phys Lett A 105:446–452

    Google Scholar 

  46. Thirman J, Head-Gordon M (2014) J Phys Chem Lett 5:1380–1385

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Spanish MINECO, Grant MICINN PGC2018-095953-B-l00, the FICyt, Grant IDI-2018-000177 and the European Union FEDER funds for financial support. F. J.-G. gratefully acknowledge financial support from the Spanish MINECO, Grant BES-2016-076986. T.R.R. acknowledges financial support from CONACyT/Mexico (Grant 253776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manuel Guevara-Vela.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Grávalos, F., Casals-Sainz, J.L., Francisco, E. et al. DFT performance in the IQA energy partition of small water clusters. Theor Chem Acc 139, 5 (2020). https://doi.org/10.1007/s00214-019-2514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-019-2514-2

Keywords

Navigation