Skip to main content
Log in

Hückeloid model for planar boranes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Diborane has long been realized as analogous to ethylene in terms of frontier molecular orbitals (MOs), their symmetries and splitting patterns. But might other conjugated hydrocarbons manifest a similar boron-substituted and H2-supplemented borane? That is, for a planar conjugated hydrocarbon with a neighbor-paired resonance pattern, we formulate corresponding boranes with each carbon atom replaced by a boron atom, and a pair of H-atoms added to each double bond of the resonance structure—one H above the molecular plane and one below. These polyboranes differ from previously known stable higher boranes. Following up on ab initio computations on selected such boranated species, we propose a simple Hückel-like electron model to describe the π-networks of these novel polyboranes. Remarkably for the even annulenic case we find a set of low-lying MO levels resembling those of the corresponding conjugated hydrocarbons. Some correlations are found beyond the annulenic case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lipscomb WN (2012) Boron Hydrides. Dover, NY

    Google Scholar 

  2. Chatterjee S (2019) Russ J Phys Chem A 93:1116–1121

    Article  Google Scholar 

  3. Mingos DMP (1972) Nat Phys Sci 236:99–102

    Article  CAS  Google Scholar 

  4. Longuet-Higgins, HC, Bell, RP (1943) J Chem Soc, 250–255

  5. Casanova J (1998) The borane, carborane, carbocation continuum. Wiley, New York, USA

    Google Scholar 

  6. Stock A (1933) The hydrides of boron and silicon. Cornell University Press, New York, USA

    Google Scholar 

  7. Sivaev IB, Bregadze VI, Sjöberg S (2002) Collect Czech Chem Commun 67:679–727

    Article  CAS  Google Scholar 

  8. Wade K (1976) Adv Inorg Chem Radiochem 18:1–66

    Article  CAS  Google Scholar 

  9. Hückel E (1931) Z Phys 70:204–286

    Article  Google Scholar 

  10. Jemmis ED, Balakrishnarajan MM, Pancharatna PDA (2001) J Am Chem Soc 123:4313–4323

    Article  CAS  Google Scholar 

  11. Jemmis ED, Balakrishnarajan MM, Pancharatna PD (2002) Chem Rev 102:93–144

    Article  CAS  Google Scholar 

  12. Jemmis ED, Jayasree EG (2003) Acc Chem Res 36:816–824

    Article  CAS  Google Scholar 

  13. Oliva-Enrich JM, Kondo T, Alkorta I, Elguero J, Klein DJ (2020) Chem Phys Chem 21:2460–2467

    Article  CAS  Google Scholar 

  14. Poater J, Solà M, Viñas C, Teixidor F (2013) Chem Eur J 19:4169–4175

    Article  CAS  Google Scholar 

  15. Oliva-Enrich JM, Alkorta I, Elguero J (2020) Molecules 25:5026

    Article  CAS  Google Scholar 

  16. Kawamura R, Cuong NT, Fujita T, Ishibiki R, Hirabayashi T, Yamaguchi A, Matsuda I, Okada S, Kondo T, Miyauchi M (2019) Nat Commun 10:4880

    Article  Google Scholar 

  17. Nishino H, Fujita T, Cuong NT, Tominaka S, Miyauchi M, Iimura S, Hirata A, Umezawa N, Okada S, Nishibori E, Fujino A, Fujimori T, Ito S, Nakamura J, Hosono H, Kondo T (2017) J Am Chem Soc 139:13761–13769

    Article  CAS  Google Scholar 

  18. Nishino H, Fujita T, Yamamoto A, Fujimori T, Fujino A, Ito S, Nakamura J, Hosono H, Kondo T (2017) J Phys Chem C 121:10587–10593

    Article  CAS  Google Scholar 

  19. Kondo T (2017) Sci Technol Adv Mater 18:780–804

    Article  Google Scholar 

  20. Fujino A, Ito S, Goto T, Ishibiki R, Kondo JN, Fujitani T, Nakamura J, Hosono H, Kondo T (2019) ACS Omega 4:14100–14104

    Article  CAS  Google Scholar 

  21. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666–669

    Article  CAS  Google Scholar 

  22. Frost AA, Musulin BJ (1953) J Phys Chem 21:572–573

    Article  CAS  Google Scholar 

  23. Gründler W (1979) Zeit Chem 19:236–237

    Article  Google Scholar 

  24. Gründler W (1983) Monatschefte Chem, 113: 15–28; ibid (1983), 114: 155–176

  25. Zivković TP (1982) Theor. Chim. Acta 1982, 61: 363–368; ibid (1983), 62, 335–350

  26. Zivković TP (1983) Croatica Chem Acta 56:525–551

    Google Scholar 

  27. Alexander SA, Schmalz TG (1987) J Am Chem Soc 109:6933–6937

    Article  CAS  Google Scholar 

  28. Klein DJ, Misra A (2004) Croat Chem Acta 77:179–191

    CAS  Google Scholar 

  29. Fries K (1927) J Liebigs Ann Chem 454:121–324

    Article  CAS  Google Scholar 

  30. Fries K, Walter R, Schilling K (1935) J Liebigs Ann Chem 516:248–285

    Article  CAS  Google Scholar 

  31. Liu X, Klein DJ, Schmalz TG (1994) Fullerene Sci Tech 2:405–422

    Article  CAS  Google Scholar 

  32. Ogata M, Luchini MU, Sorella S, Assaad FF (1991) Phys Rev Lett 68:2388–2391

    Article  Google Scholar 

  33. Dagotto E, Riera J (1993) Phys Rev Lett, 70: 682–685; Phys Rev B, 1992, 46: 12084–12087

  34. Izyumov YA (1997) Phys Uspekhi 40:445–476

    Article  Google Scholar 

  35. Hellberg CS, Manousakis E (1997) Phys Rev Lett 78:4609–4612

    Article  CAS  Google Scholar 

  36. Mallik AV, Gupta GK, Shenoy VB, Krishnamurthy HR (2020) Phys Rev Lett 124:147002

    Article  CAS  Google Scholar 

  37. Fischer H, Murrell JN (1963) Theor Chim Acta 1:463–467

    Article  CAS  Google Scholar 

  38. Klein DJ, Seitz WA (1974) Phys Rev B 10:3217–3226

    Article  CAS  Google Scholar 

  39. Balaban AT, Banciu M, Ciorba V (1986) Annulenes, benzo-, hetero-, homo-derivatives and their valence isomers. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  40. Balaban AT (1974) Rev Roum Chim 19:1323–1342

    CAS  Google Scholar 

  41. Matsuda I, Wu K (eds) (2021) 2D boron: boraphene, borophene, boronene. Springer Nature, Cham, Switzerland

    Google Scholar 

  42. Li Q, Kolluru VSC, Rahn MS, Schwenker E, Li S, Hennig RG, Darancet P, Chan MKY, Hersam MC (2021) Science 371:1143–1148

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Spanish MICINN, grant number CTQ2018-094644-B-C22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Oliva-Enrich.

Additional information

Dedicated to Professor Alexandru T. Balaban.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, D.J., Ferrer, M., Elguero, J. et al. Hückeloid model for planar boranes. Theor Chem Acc 140, 55 (2021). https://doi.org/10.1007/s00214-021-02752-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-021-02752-x

Keywords

Navigation