Skip to main content
Log in

Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical detection without derivatization was used to detect thiol-containing degradation products of V-type nerve agents. Electropolymerization of pyrrole was used for entrapment of the biocatalyst PQQ to produce a sensor. Various parameters which affect the detection processes such as the type of the supporting electrolyte used during electrodeposition and the thickness of the polypyrrole film were examined and optimized. Electocatalytic oxidation of thiols by the PPy/PQQ electrode was strongly affected by the presence of Ca2+ cations during electrodeposition of the PPy/PQQ. Cyclic voltammetry, linear sweep voltammetry and amperometry have been used for electrode characterization. Amperometric detection of the V-type nerve agent thiol degradation products 2-(dimethylamino)ethanethiol (DMAET) and 2-(diethylamino)ethanethiol (DEAET) was performed at 0.38 V. Linear calibration plots were observed for these compounds. The detection limits of 4.5 and 3 μM were obtained for DMAET and DEAET respectively, with sensitivities of 1.18 and 1.37 nA μM−1 cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CE:

capillary electrophoresis

CV:

cyclic voltammetry

CWA:

chemical warfare agents

DEAET:

2-(diethylamino)ethanethiol

DMAET:

2-(dimethylamino)ethanethiol

EC:

electrochemical

GC:

glassy carbon

GC-MS:

gas chromatography with mass spectrometry detection

HPLC:

high performance liquid chromatography

LSV:

linear sweep voltammetry

OP:

organophosphate

PQQ:

pyrroloquinoline quinone

PPy:

polypyrrole

SEM:

scanning electron microscopy

References

  1. Quinn DM (1987) Chem Rev 87:955–979

    Article  CAS  Google Scholar 

  2. Voet D, Voet JG (1990) (eds) Biochemistry. Wiley, New York, p 1168

  3. Ellison H (2000) Handbook of chemical and biological warfare agents. CRC Press, Boca Raton, Florida

    Google Scholar 

  4. Yang Y (1999) Acc Chem Res 32:109–115

    Article  CAS  Google Scholar 

  5. Cooper C, Collins G (2004) Electrophoresis 25:897–902

    Article  CAS  Google Scholar 

  6. Tornes JA, Johnsen BA (1989) J Chromatorgr 467:129–138

    Article  Google Scholar 

  7. Purdon JG, Pagotto JP, Miller RK (1989) J Chromatorgr 475:261–272

    Article  CAS  Google Scholar 

  8. Pal PR (1959) J Biol Chem 234:618–619

    CAS  Google Scholar 

  9. Jelleum E, Bacon VA, Patton W (1969) Anal Biochem 31:339–347

    Article  Google Scholar 

  10. Assem ESK (1974) Curr Med Res Opin 2:568–572

    CAS  Google Scholar 

  11. Copper CL, Collins GE (2004) Electrophoresis 25:897–902

    Article  CAS  Google Scholar 

  12. Wang J, Zima J, Lawrence NS, Chatrathi MP, Mulchandani A, Collins GE (2004) Anal Chem 76:4721–4726

    Article  CAS  Google Scholar 

  13. Allison LA, Shoup RE (1983) Anal Chem 55:8–12

    CAS  Google Scholar 

  14. Hoekstra JC, Johnson DC (1998) Anal Chem 70:83–88

    Article  CAS  Google Scholar 

  15. Qi XH, Baldwin RP (1996) J Electrochem Soc 143:1283–1287

    Article  CAS  Google Scholar 

  16. Shi G, Lu J, Xu F, Sun W, Jin L, Yamamoto K, Tao S, Jin J (1999) Anal Chim Acta 391:307–313

    Article  CAS  Google Scholar 

  17. Ricci F, Arduini F, Tula C, Sozzo U, Moscone D, Amine A, Palleschi G (2006) Anal Chim Acta 558:164–170

    Article  CAS  Google Scholar 

  18. Lawrence NS, Davis J, Compton RG (2001) Talanta 53:1089–1094

    Article  CAS  Google Scholar 

  19. Mao L, Yamamoto K (2000) Electroanalysis 12:577–582

    Article  CAS  Google Scholar 

  20. Hignett G, Threlfell S, Wain AJ, Lawrence NS, Wilkins SJ, Davis J, Compton RG, Cardosi MF (2001) Analyst 126:353–357

    Article  CAS  Google Scholar 

  21. Inoue T, Kirchhoff JR (2000) Anal Chem 72:5755–5760

    Article  CAS  Google Scholar 

  22. Salisbury SA, Forrest HS (1979) Nature 280:843–844

    Article  CAS  Google Scholar 

  23. McIntire W (1992) Essays Biochem 27:119–134

    CAS  Google Scholar 

  24. Frebortova J, Matsushita K, Arata H, Adachi O (1998) Biochim Biophys Acta 1363:24–34

    Article  CAS  Google Scholar 

  25. Oshiro Y, Itoh S (1988) In: Jongejan JA, Duine JA (eds) PQQ and quinoproteins, Kluwer, Dordrecht, p 195

    Google Scholar 

  26. Noar JB, Rodriguez EJ, Bruice TC (1985) J Am Chem Soc 107:7198–7199

    Article  CAS  Google Scholar 

  27. Katz E, Lotzbeyer T, Schlereth D, Schuhmann W, Schmidt H-L (1994) J Electroanal Chem 387:189–200

    Article  Google Scholar 

  28. Shinohara H, Khan GF, Aizawa M (1991) J Electroanal Chem 304:74–84

    Article  Google Scholar 

  29. Holdkroft S, Funt BL (1988) J Electroanal Chem 240:89–103

    Article  Google Scholar 

  30. Kissinger PT, Heineman WR (1984) Laboratory techniques in elecroanalytical chemistry. Dekker, New York

    Google Scholar 

  31. Turdean G, Popescu I, Oniciu L, Thevenot D (2002) J Enz Inh Med Chem 17:107–115

    Article  CAS  Google Scholar 

  32. Turdean G, Mosneag C, Popescu I (2000) ACH-Models Chem 137:519–531

    CAS  Google Scholar 

  33. Shaidarova LG, Fomin AY, Ziganshina EP, Medyantseva EP, Budnikov GK (2002) J Anal Chem 57:150–156

    Article  CAS  Google Scholar 

  34. Lund H, Baizer M (1991) (eds) Organic electrochemistry: an introductory guide. Dekker, New York, p 660

  35. Tumanova EA, Safronov AY, Kapustin AV (2001) Russ J Electrochem 37:972–975

    Article  CAS  Google Scholar 

  36. Tian F, Xu B, Zhu L, Zhu G (2001) Anal Chim Acta 443:9–16

    Article  CAS  Google Scholar 

  37. Wang J, Myung N, Yun M, Monbouquette HG (2005) J Electroanal Chem 575:139–146

    Article  CAS  Google Scholar 

  38. Cakmak G, Küçükyavuz Z, Küçükyavuz S (2005) Synth Met 151:10–18

    Article  CAS  Google Scholar 

  39. Kassim A, Basar Z, Mahmud HN (2002) Proc Indian Acad Sci 114:155–162

    Article  CAS  Google Scholar 

  40. Itoh S, Kato N, Ohshiro Y, Agawa T (1985) Chem Lett 135–136

  41. Vidal J, Garsia E, Castillo J (1998) Biosens Bioelectron 13:371–382

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Shulga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulga, O.V., Palmer, C. Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte. Anal Bioanal Chem 385, 1116–1123 (2006). https://doi.org/10.1007/s00216-006-0531-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0531-1

Keywords

Navigation