Skip to main content
Log in

Development of a supercritical fluid extraction–gas chromatography–mass spectrometry method for the identification of highly polar compounds in secondary organic aerosols formed from biogenic hydrocarbons in smog chamber experiments

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new one-step method for the analysis of highly polar components of secondary organic aerosols (SOA) has been developed. This method should lead to a better understanding of SOA formation and evolution since it enables the compounds responsible for SOA formation to be identified. Since it is based on supercritical fluid extraction coupled to gas chromatography–mass spectrometry, it minimizes the analysis time and significantly enhances sensitivity, which makes it suitable for trace-level compounds, which are constituents of SOA. One of the key features of this method is the in situ derivatisation step: an online silylation allowing the measurement of highly polar, polyfunctional compounds, which is a prerequisite for the elucidation of chemical mechanisms. This paper presents the development of this analytical method and highlights its ability to address this major atmospheric issue through the analysis of SOA formed from the ozonolysis of a biogenic hydrocarbon (sabinene). Ozonolysis of sabinene was performed in a 6 m3 Teflon chamber. The aerosol components were derivatised in situ. More than thirty products, such as sabinaketone, sabinic acid and other multifunctional compounds including dicarboxylic acids and oxoacids, were measured. Nine of them were identified and quantified. The sensitivity and the linearity (0.91 < R < 0.98) of the method were both good and detection limits ranged from 1.2 to 6.4 ng for the investigated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seinfled JH, Pankow JF (2003) Annu Rev Phys Chem 54:121–140

    Article  CAS  Google Scholar 

  2. Atkinson R, Arey J (1998) Acc Chem Res 31:574–583

    Article  CAS  Google Scholar 

  3. Griffin RJ, Cocker III DR, Flagan RC, Seinfeld JH (1999) J Geophys Res 104:3555–3567

    Article  CAS  Google Scholar 

  4. Kanakidou M, Seinfeld JH, Pandis SN, Barnes I, Dentener FJ, Facchini MC, Van Dingenen R, Ervens B, Nenes A, Nielsen CJ, Swietlicki E, Putaud JP, Balkanski Y, Fuzzi S, Horth J, Moortgat GK, Winterhalter R, Myhre CEL, Tsigaridis K, Vignati E, Stephanou EG, Wilson J (2005) Atmos Chem Phys 4:1053–1123

    Google Scholar 

  5. Pope CA (1996) Toxicology 111:149–155

    Article  CAS  Google Scholar 

  6. Lioy PJ, Daisey JM (1986) Environ Sci Technol 20:8–14

    Article  CAS  Google Scholar 

  7. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Speizer FE (1993) N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  8. Jonsson AM, Hallquist M, Ljungström E (2006) Environ Sci Technol 40:188–194

    CAS  Google Scholar 

  9. Gao S, Keywood M, Ng NL, Surratt J, Varutbangkul V, Bahreini R, Flagan RC, Seinfeild JH (2004) J Phys Chem A 108:10147–10164

    Article  CAS  Google Scholar 

  10. Yu J, Cocker DR 3rd, Griffin RJ, Flagan RC, Seinfeld JH (1999) J Atmos Chem 34:207–258

    Article  CAS  Google Scholar 

  11. Koch S, Winterhalter R, Uherek E, Kolloff A, Neeb P, Moortgat GK (2000) Atmos Environ 34:4031–4042

    Article  CAS  Google Scholar 

  12. Edney EO, Kleindienst TE, Conver TS, McIver CD, Corse EW, Weathers WS (2003) Atmos Environ 37:3947–3965

    Article  CAS  Google Scholar 

  13. Jang M, Kamens RM (1999) Atmos Environ 33:459–474

    Article  CAS  Google Scholar 

  14. Glasius M, Lahaniati M, Calogirou A, Di Bella D, Jensen NR, Hjorth J, Kotzias D, Larsen BR (2000) Environ Sci Technol 34:1001–1010

    Article  CAS  Google Scholar 

  15. Larsen BR, Di Bella D, Glasius M, Winterhalter R, Jensen NR, Hjorth J (2001) J Atmos Chem 38:231–276

    Article  CAS  Google Scholar 

  16. Winterhalter R, Van Dingenen R, Larsen BR, Jensen NR, Hjorth J (2003) Atmos Chem Phys Discuss 3:1–39

    Article  Google Scholar 

  17. Winterhalter R, Neeb P, Grossmann D, Kolloff A, Horie O, Moortgat G (2000) J Atmos Chem 35:165–197

    Article  CAS  Google Scholar 

  18. Ökten B, Tolocka MP, Johnston MV (2004) Anal Chem 76:253–261

    Article  CAS  Google Scholar 

  19. Tobias HJ, Ziemann P (2000) Environ Sci Technol 34:2105–2115

    Article  CAS  Google Scholar 

  20. Baltensperger U, Kelberer M, Dommen J, Paulsen D, Alfarra MR, Coe H, Fisseha R, Gascho A, Gysel M, Nyeki S, Sax M, Steinbacher M, Prevot ASH, Sjögren S, Weingartner E, Zenobi R (2005) Faraday Discuss 130:265–278

    Google Scholar 

  21. Warscheid B, Hoffmann T (2001) Rapid Commun Mass Spectrom 15:2259–2272

    Article  CAS  Google Scholar 

  22. Kückelmann U, Warscheid B, Hoffmann T (2000) Anal Chem 72:1905–1912

    Article  CAS  Google Scholar 

  23. Forstner HJL, Flagan RC, Seinfeild JH (1997) Environ Sci Technol 31:1345–1358

    Article  CAS  Google Scholar 

  24. Shimmo M, Hyötyläinen T, Hartonen K, Riekkola ML (2001) J Microcolumn Sep 13:202–210

    Google Scholar 

  25. Hansen KJ, Hansen BN, Cravens E, Sievers RE (1995) Anal Chem 67:3541–3549

    Article  CAS  Google Scholar 

  26. Hawthorne SB, Miller D (1994) Anal Chem 66:4005–4012

    Article  CAS  Google Scholar 

  27. Hawthorne SB, Grabanski CB, Martin E, Miller D (2000) J Chromatogr A 892:421–433

    Article  CAS  Google Scholar 

  28. Burford MD, Bartle KD, Hawthorne SB (1997) Adv Chromatogr 37:163–204

    CAS  Google Scholar 

  29. Hawthorne SB, Miller D (1986) J Chromatogr Sci 24:258–264

    CAS  Google Scholar 

  30. Wright BW, Frye SR, McMinn DG, Smith RD (1987) Anal Chem 59:640–644

    Article  CAS  Google Scholar 

  31. Forstner HJL, Flagan RC, Seinfeild JH (1996) Atmos Environ 31:1953–1964

    Article  Google Scholar 

  32. Shimmo M, Adler H, Hyötyläinen T, Hartonen K, Kulmala M, Riekkola ML (2002) Atmos Environ 36:2985–2995

    Article  CAS  Google Scholar 

  33. Shimmo M, Anttila P, Hartonen K, Hyötyläinen T, Paatero J, Kulmala M, Riekkola ML (2004) J Chromatogr A 1022:151–159

    Article  CAS  Google Scholar 

  34. Shimmo M, Jäntti J, Aalto P, Hartonen K, Adler H, Hyötyläinen T, Kulmala M, Riekkola ML (2004) Anal Bioanal Chem 378:1982–1990

    Article  CAS  Google Scholar 

  35. Carrasco N, Rayez MT, Rayez JC, Doussin JF (2006) Phys Chem Chem Phys 8:3211

    Google Scholar 

  36. Thuener LP, Bardini P, Rea GJ, Wenger JC (2004) J Phys Chem 108:11019–11025

    CAS  Google Scholar 

  37. Camel V, Tambuté A, Caude M (1993) J Chromatogr 642:263–281

    Article  CAS  Google Scholar 

  38. Bowadt S, Hawthorne SB (1995) J Chromatogr A 703:549–571

    Article  CAS  Google Scholar 

  39. Taylor LT (1996) Supercritical fluid extraction. Wiley, New York

  40. Griesbaum K, Miclaus V (1998) Environ Sci Technol 32:647–649

    Article  CAS  Google Scholar 

  41. Yu J, Flagan RC, Seinfeld JH (1998) Environ Sci Technol 32:2357–2370

    Article  CAS  Google Scholar 

  42. Jenkin ME (2004) Atmos Chem Phys 4:1741–1757

    Article  CAS  Google Scholar 

  43. Kalberer M, Paulsen D, Sax M, Prevot ASH, Fisseha R, Weingartner E, Frankevich V, Zenobi R, Baltensperger U (2004) Science 303:1659–1662

    Article  CAS  Google Scholar 

  44. Tolocka MP, Jang M, Ginter JM, Cox FJ, Kamens RM, Johnston MV (2004) Environ Sci Technol 38:1428–1434

    Article  CAS  Google Scholar 

  45. Kalberer M (2006) Anal Bioanal Chem 385:22–25

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CNRS-INSU through the French national program on atmospheric chemistry (PNCA), the French Ministry of Environment through the PRIMEQUAL program, and the European EUROCHAMP program. We would like to thank John Wenger for smog chamber experiments carried out in the CRAC laboratory (Cork, Ireland), Nathalie Carrasco for the sabinaketone synthesis, and Daniel Rousseau (ThermoFinnigan) for his technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Chiappini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiappini, L., Perraudin, E., Durand-Jolibois, R. et al. Development of a supercritical fluid extraction–gas chromatography–mass spectrometry method for the identification of highly polar compounds in secondary organic aerosols formed from biogenic hydrocarbons in smog chamber experiments. Anal Bioanal Chem 386, 1749–1759 (2006). https://doi.org/10.1007/s00216-006-0744-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0744-3

Keywords

Navigation