Skip to main content
Log in

Fiber-optic flow-through sensor for online monitoring of glucose

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new microdialysis-based glucose-sensing system with an integrated fiber-optic hybrid sensor is presented. Design and dimensions of the cell are adapted for its coupling with commercially available microdialysis techniques, thereby providing a new system for continuous glucose monitoring. The glucose level is detected via oxygen consumption which occurs as a consequence of enzymatic reaction between immobilized glucose oxidase and glucose. The use of gas-permeable Tygon tubing ensures complete and constant air-saturation of the measuring fluid in the cell. Nevertheless, a reference oxygen optode is used to detect and to compensate response changes caused by events like bacterial growth, temperature fluctuations, or failure of the peristaltic pump. In contrast to widely used electrochemical sensors, the response of the microdialysis-based fiber-optic glucose sensor is highly selective, making this sensor approach particularly advantageous for continuous glucose monitoring of patients in intensive care units. The effects of flow rate, pH, temperature, and common interferences on the sensor response are presented and discussed in detail. The sensor is evaluated in vitro using a 3-day continuous test in glucose-spiked plasma. The ability to measure glucose in humans is demonstrated by coupling the flow-through cell and commercially available microdialysis catheter CMA60. A 24-h monitoring test using this setup is successfully applied to a healthy volunteer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. The Diabetes Control and Complications Trial Research Group (1993) N Eng J Med 329:986–997

    Article  Google Scholar 

  2. UK Prospective Diabetes Study Group (1998) Lancet 352:853–873

    Article  Google Scholar 

  3. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R (2001) N Engl J Med 345:1359–1367

    Article  Google Scholar 

  4. Klonoff DC (2005) Diabetes Care 28:1231–1239

    Article  Google Scholar 

  5. Mastrototaro J (1999) J Pediatr Endocrinol Metab 12:751–758

    Google Scholar 

  6. Mastrototaro J (2000) Diabetes Technol Ther 2:13–18

    Article  Google Scholar 

  7. Poscia A, Mascini M, Moscone D, Luzzana M, Caramenti G, Cremonesi P, Valgimigli F, Bongiovanni C, Varalli M (2003) Biosens Bioelectron 18:891–898

    Article  CAS  Google Scholar 

  8. Varalli M, Marelli G, Maran A, Bistoni S, Luzzana M, Cremonessi P, Caramenti G, Valgimigli F, Poscia A (2003) Biosens Bioelectron 18:899–905

    Article  CAS  Google Scholar 

  9. Tang Z, Du X, Louie RF, Kost GJ (2000) Am J Clin Path 113:75–86

    Article  CAS  Google Scholar 

  10. Uwira N, Opitz N, Lubbers DW (1984) Adv Exp Med Biol 169:915–920

    Google Scholar 

  11. Trettnak W, Leiner MJP, Wolfbeis OS (1988) The Analyst 113:1519–1523

    Article  CAS  Google Scholar 

  12. Schaffer BP, Wolfbeiss OS (1990) Biosens Bioelectron 5:137–148

    Article  Google Scholar 

  13. Rosenzweig Z, Kopelman R (1996) Anal Chem 68:1408–1413

    Article  CAS  Google Scholar 

  14. Young JS, Sculy PS, Kvasnik F, Rose K, Kunzova G, Podrazky O, Matejec V, Mrazek J (2005) Proc SPIE Int Soc Opt Eng 5855:431–434

    CAS  Google Scholar 

  15. Li L, Walt DR (1995) Anal Chem 67:3746–3752

    Article  CAS  Google Scholar 

  16. Lubbers DW, Volkl KP, Grossman U, Optiz N (1981) Progress in enzyme and ion selective electrodes. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Dremel BAA, Li SY, Schmid RD (1992) Biosens Bioelectron 7:133–139

    Article  CAS  Google Scholar 

  18. Ungerstedt U (1991) J Intern Med 230:375–380

    Article  Google Scholar 

  19. Wientjes KJ, Vonk P, Klei YV, Schoonen AJM, Kossen NW (1998) Diabetes Care 21:1481–1488

    Article  CAS  Google Scholar 

  20. Palmisano F, Centonze D, Guerrieri A and Zambonin PG (1993) Biosens Bioelectron 8:393–398

    Article  CAS  Google Scholar 

  21. Yang L, Kissinger PT, Ohara T (1995) Current Separations 14:31–35

    CAS  Google Scholar 

  22. Schoemaker M, Andreis E, Roeper J, Kotulla R, Lodwig V, Obermaier K, Stephan P, Reuschling W, Rutschmann M, Schwaninger R, Wittmann U, Rinne H, Kontschieder H, Strohmeier W (2003) Diabetes Technol Ther 5:599–608

    Article  CAS  Google Scholar 

  23. Beyer U, Schaefer D, Thomas A, Aulich H, Haueter U, Reihl B, Ehwald R (2001) Diabetologia 44:416–423

    Article  CAS  Google Scholar 

  24. Pasic A, Koehler H, Klimant I, Schaupp L (2006) Sens Actuat B (in press)

  25. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer, New York

    Google Scholar 

  26. Benveniste HJ (1989) Neurochem 52:1667–1679

    Article  CAS  Google Scholar 

  27. Powers DM, Boyd JC, Glick MR (1986) Interference testing in clinical chemistry, proposed guideline VIllanova, PA, National Committee for Clinical Laboratory Standards, NCCLS publication EP7-P

  28. Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Gilman AG (1996) Goodmann and Gilmans’s the pharmacological basis of therapeutics. New York, NY

  29. Boyne MS, Silver DM, Kaplan J, Saudek CD (2003) Diabetes 52:2790–2794

    Article  CAS  Google Scholar 

  30. Clark WL, Cox D, Gonder-Frederick LA, Carter W, Pol SL (1987) Diabetes Care 10:622–628

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the European Commission with the CLINICIP project (contract no. 506965 within the 6th frame work program) is gratefully acknowledged. Dipl.-Ing. Manfred Bodenlenz and Dr. med. Gerd Köhler are gratefully acknowledged for their support during experiments on healthy volunteers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Klimant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasic, A., Koehler, H., Schaupp, L. et al. Fiber-optic flow-through sensor for online monitoring of glucose. Anal Bioanal Chem 386, 1293–1302 (2006). https://doi.org/10.1007/s00216-006-0782-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0782-x

Keywords

Navigation