Skip to main content
Log in

Analysis of trace levels of pesticides in rainwater by SPME and GC-tandem mass spectrometry after derivatisation with PFFBr

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Solid-phase microextraction (SPME) was used for the analysis of some pesticides (bromoxynil, chlorotoluron, diuron, isoproturon, 2,4-MCPA, MCPP and 2,4-D) in rainwater after derivatisation with PFBBr and gas chromatography-ion trap mass spectrometry. The derivatisation procedure was optimized by testing different methods: direct derivatisation in the aqueous phase followed by SPME extraction, on-fibre derivatisation and derivatisation in the injector. The best result was obtained by headspace coating the PDMS/DVB fibre with PFBBr for 10 min followed by direct SPME extraction for 60 min at 68 °C (pH 2 and 75% NaCl). Good detection limits were obtained for all the compounds: these ranged between 10 and 1,000 ng L−1 with a relatively high uncertainty due to the combination of derivatisation and SPME extraction steps. The optimized procedure was applied to the analysis of pesticides in rainwater and results obtained shows that this method is a fast and simple technique to assess the spatial and temporal variations of concentrations of pesticides in rainwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanusi A, Millet M, Mirabel PH, Wortham H (1999) Atmos Environ 33:4941–4951

    Article  CAS  Google Scholar 

  2. Abbot DC, Harrison RB, Tatton JOG, Thomson J (1965) Nature 208:1317–1318

    Article  Google Scholar 

  3. Tarrant KR, Tatton JOG (1968) Nature 219:725

    Article  CAS  Google Scholar 

  4. Millet M, Wortham H, Sanusi A, Mirabel Ph (1997) Environ Sci Poll Res 4:172–180

    Article  CAS  Google Scholar 

  5. Briand O, Seux R, Millet M, Clément M (2002) Revue des Sciences de l’Eau 15:767–787

    CAS  Google Scholar 

  6. de Rossi C, Bierl R, Riefstahl J (2003) Phys Chem Earth 28:307–314

    Google Scholar 

  7. Grynkiewicz M, Polkowska Z, Gorecki T, Namiesnik J (2003) Water Air Soil Pollut 149:3–16

    Article  CAS  Google Scholar 

  8. Quaghebeur D, De Smet B, De Wulf E, Steurbaut W (2004) J Environ Monit 6:182–190

    Article  CAS  Google Scholar 

  9. Chevreuil M, Garmouma M, Teil M-J, Chesterikoff A (1996) Sci Tot Env 182:25–37

    Article  CAS  Google Scholar 

  10. Barcelo D (1993) J Chromatogr A 643:117–143

    Article  CAS  Google Scholar 

  11. Albanis TA, Hela DG (1995) J Chromatogr A 707:283–292

    Article  CAS  Google Scholar 

  12. Majewski MS, Foreman WT, Goolsby DA (2000) Sci Tot Env 248:201–212

    Article  CAS  Google Scholar 

  13. Liska I, Slobodnik J (1996) J Chromatogr A 733:235–258

    Article  CAS  Google Scholar 

  14. Simon D, Helliwell S, Robards K (1998) Anal Chim Acta 360:1–16

    Article  CAS  Google Scholar 

  15. Gennaro MC, Marengo E, Gianotti V, Maurino V (2001) J Chromatogr A 910:79–86

    Article  CAS  Google Scholar 

  16. Berrada H, Font G, Molto JC (2000) J Chromatogr A 890:303–312

    Article  CAS  Google Scholar 

  17. Nilsson T, Baglio D, Galdo-Miguez I, Øgaard Madsen J, Facchetti S (1998) J Chromatogr A 826:211–216

    Article  CAS  Google Scholar 

  18. Lee M, Lee R, Lin Y, Chen C, Hwang B (1998) Anal Chem 70:1963–1968

    Article  CAS  Google Scholar 

  19. Bertrand MJ, Ahmed AW, Sarrasin B, Mallet VN (1987) Anal Chem 59:1302–1306

    Article  CAS  Google Scholar 

  20. Vassilakis I, Tsipi D, Scoullos M (1998) J Chromatogr A 823:49–58

    Article  CAS  Google Scholar 

  21. Chau ASY, Terry K (1976) J Assoc Offic Anal Chem 59:633–636

    CAS  Google Scholar 

  22. Cotterill EG (1992) Pestic Sci 34:291–296

    Article  CAS  Google Scholar 

  23. Cserhati T, Forgacs E (1998) J Chromatogr B 717:157–178

    Article  CAS  Google Scholar 

  24. Poulard M, Briand O, Seux R, Millet M (2000) Proceedings of the “XXXème congrès du Groupe Français des Pesticides”, Reims, France, Presses Universitaires de Reims, pp 21–29

  25. Boucharat C, Desauzier V, Le Cloirec P (1998) Talanta 47:311–323

    Article  CAS  Google Scholar 

  26. Lord H, Pawliszyn J (2000) J Chromatogr A 885:153–193

    Article  CAS  Google Scholar 

  27. Gerecke AC, Tixier C, Bartels T, Schwarzenbach RP, Müller SR (2001) J Chromatogr A 930:9–19

    Article  CAS  Google Scholar 

  28. Buchholz KD, Pawliszyn J (1994) Anal Chem 66:160–167

    Article  CAS  Google Scholar 

  29. Henriksen T, Svensmark B, Lindhardt B, Julher RK (2001) Chemosphere 44:1531–1539

    Article  CAS  Google Scholar 

  30. Carabias-Martinez R, Garcia-Hermida C, Rodriguez-Gonzalo E, Soriano-Bravo FE, Hernandez-Mendez J (2003) J Chromatog A 1002:1–12

    Article  CAS  Google Scholar 

  31. Catalina MI, Dallüge J, Vreuls RJJ, Brinkman UATh (2000) J Chromatogr A 877:153–166

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Region Alsace through project 2001, the French Ministry of Ecology and Sustainable Development through Primequal-2 program and through a grant from DRIRE-Alsace. Authors want also to thanks the ADEME and Region Alsace for the financial support of the PhD of Anne Scheyer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurice Millet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheyer, A., Briand, O., Morville, S. et al. Analysis of trace levels of pesticides in rainwater by SPME and GC-tandem mass spectrometry after derivatisation with PFFBr. Anal Bioanal Chem 387, 359–368 (2007). https://doi.org/10.1007/s00216-006-0894-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-0894-3

Keywords

Navigation