Skip to main content
Log in

Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Amperometric acetylcholinesterase biosensors have been developed for quantification of the pesticides carbofuran, carbaryl, methylparaoxon, and dichlorvos in phosphate buffer containing 5% acetonitrile. Three different biosensors were built using three different acetylcholinesterase (AChE) enzymes—AChE from electric eel, and genetically engineered (B394) and wild-type (B1) AChE from Drosophila melanogaster. Enzymes were immobilized on cobalt(II) phthalocyanine-modified electrodes by entrapment in a photocrosslinkable polymer (PVA-AWP). Each biosensor was tested against the four pesticides. Good operational stability, immobilisation reproducibility, and storage stability were obtained for each biosensor. The best detection limits were obtained with the B394 enzyme for dichlorvos and methylparaoxon (9.6 × 10−11 and 2.7 × 10−9 mol L−1, respectively), the B1 enzyme for carbofuran (4.5 × 10−9 mol L−1), and both the B1 enzyme and the AChE from electric eel for carbaryl (1.6 × 10−7 mol L−1). Finally, the biosensors were used for the direct detection of the pesticides in spiked apple samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO (1986) Environmental Health Criteria. World Health Organization, Geneva

    Google Scholar 

  2. Barcelo D (1993) Environmental analysis: techniques, applications and quality assurance. Elsevier, Amsterdam

    Google Scholar 

  3. Lacorte S, Barcelo D (1995) J Chromatogr A 712:103–112

    Article  CAS  Google Scholar 

  4. Lacorte S, Barcelo D (1996) J Chromatogr A 725:85–92

    Article  Google Scholar 

  5. Hart AL, Collier WA, Janssen D (1997) Biosens Bioelectron 12:645–654

    Article  CAS  Google Scholar 

  6. Vakurov A, Simpson CE, Daly CL, Gibson TD, Millner PA (2004) Biosens Bioelectron 20:1118–1125

    CAS  Google Scholar 

  7. Law KA, Higson SPJ (2005) Biosens Bioelectron 20:1914–1924

    Article  CAS  Google Scholar 

  8. Bucur B, Fournier D, Danet A, Marty J-L (2006) Anal Chim Acta 562:115–121

    Article  CAS  Google Scholar 

  9. Andreescu S, Marty J-L (2006) Biomol Eng 23:1–15

    Article  CAS  Google Scholar 

  10. Andreescu S, Noguer T, Magearu V, Marty J-L (2002) Talanta 57:169–176

    Article  CAS  Google Scholar 

  11. Schulze H, Vorlova S, Villatte F, Bachmann TT, Schmid RD (2003) Biosens Bioelectron 18:201–209

    Article  CAS  Google Scholar 

  12. de Oliveira Marques PRB, Nunes GS, dos Santos TCR, Andreescu S, Marty J-L (2004) Biosens Bioelectron 20:825–832

    Google Scholar 

  13. Bachmann TT, Schmid RD (1999) Anal Chim Acta 401:95–103

    Article  CAS  Google Scholar 

  14. Andreescu S, Avramescu A, Bala C, Magearu V, Marty J-L (2002) Anal Bioanal Chem 374:39–45

    Article  CAS  Google Scholar 

  15. Palchetti I, Cagnini A, Del Carlo M, Coppi C, Mascini M, Turner APF (1997) Anal Chim Acta 337:315–321

    Article  CAS  Google Scholar 

  16. Wilkins E, Carter M, Voss J, Ivnitski D (2000) Electrochem Commun 2:786–790

    Article  CAS  Google Scholar 

  17. Montesinos T, Perez-Munguia S, Valdez F, Marty J-L (2001) Anal Chim Acta 431:231–237

    Article  CAS  Google Scholar 

  18. Dondoi MP, Bucur B, Danet AF, Toader CN, Barthelmebs L, Marty J-L (2006) Anal Chim Acta 578:162–169

    Article  CAS  Google Scholar 

  19. Del Carlo M, Mascini M, Pepe A, Compagnone D, Mascini M (2002) J Agric Food Chem 50:7206–7210

    Article  Google Scholar 

  20. Saini S, Hall GF, Downs MEA, Turner APF (1991) Anal Chim Acta 249:1–15

    Article  CAS  Google Scholar 

  21. Karyakin AA, Karyakina EE, Gorton L, Bobrova OA, Lukachova LV, Gladilin AK, Levashov AV (1996) Anal Chem 68:4335–4341

    Article  CAS  Google Scholar 

  22. Turdean GL, Turdean MS (2008) Pestic Biochem Phys 90:73–81

    Article  CAS  Google Scholar 

  23. Ronzani N (1993) Tetrahedron Lett 34:3867–3870

    Article  CAS  Google Scholar 

  24. Mionetto N, Marty J-L, Karube I (1994) Biosens Bioelectron 9:463–470

    Article  CAS  Google Scholar 

  25. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) Biochem Pharmacol 7:88–90

    Article  CAS  Google Scholar 

  26. Villatte F, Marcel V, Estrada-Mondaca S, Fournier D (1998) Biosens Bioelectron 13:157–164

    Article  CAS  Google Scholar 

  27. Nunes GS, Montesinos T, Marques PBO, Fournier D, Marty JL (2001) Anal Chim Acta 434:1–8

    Article  CAS  Google Scholar 

  28. Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  29. Fennouh S, Casimiri V, Burstein C (1997) Biosens Bioelectron 12:97–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Red ALFA II for the BioSenIntg Clave: II-0486-FCFA-FCD-FI project. G.V.R. acknowledges CONACYT for a studentship granted through number 184923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Marty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdés-Ramírez, G., Cortina, M., Ramírez-Silva, M.T. et al. Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Anal Bioanal Chem 392, 699–707 (2008). https://doi.org/10.1007/s00216-008-2290-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2290-7

Keywords

Navigation