Skip to main content
Log in

A method for the quantification of biomarkers of exposure to acrylonitrile and 1,3-butadiene in human urine by column-switching liquid chromatography–tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

1,3-Butadiene and acrylonitrile are important industrial chemicals that have a high production volume and are ubiquitous environmental pollutants. The urinary mercapturic acids of 1,3-butadiene and acrylonitrile—N-acetyl-S-(3,4-dihydroxybutyl)cysteine (DHBMA) and MHBMA (an isomeric mixture of N-acetyl-S-((1-hydroxymethyl)-2-propenyl)cysteine and N-acetyl-S-((2-hydroxymethyl)-3-propenyl)cysteine) for the former and N-acetyl-S-2-cyanoethylcysteine (CEMA) for the latter—are specific biomarkers for the determination of individual internal exposure to these chemicals. We have developed and validated a fast, specific, and very sensitive method for the simultaneous determination of DHBMA, MHBMA, and CEMA in human urine using an automated multidimensional LC/MS/MS method that requires no additional sample preparation. Analytes are stripped from urinary matrix by online extraction on a restricted access material, transferred to the analytical column, and subsequently determined by tandem mass spectrometry using labeled internal standards. The limits of quantification (LOQs) for DHBMA, MHBMA, and CEMA were 10 µg/L, 2 µg/L, and 1 µg/L urine, respectively, and were sufficient to quantify the background exposure of the general population. Precision within series and between series for all analytes ranged from 5.4 to 9.9%; mean accuracy was between 95 and 115%. We applied the method on spot urine samples from 210 subjects from the general population with no occupational exposure to 1,3-butadiene or acrylonitrile. A background exposure of the general population to acrylonitrile was discovered that is basically influenced by individual exposure to passive smoke as well as active smoking habits. Smokers showed a significantly higher excretion of MHBMA, whereas DHBMA levels did not differ significantly. Owing to its automation, our method is well suited for application in occupational or environmental studies.

Boxplots of the results from LC/ESI-MS/MS analysis of urinary excretion of CEMA reveal a strong correlation with nicotine metabolite cotinine, indicating that exposure to passive smoke as well as active smoking is the main source of exposure to acrylonitrile in the general population

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. US Department of Health and Human Services, Public Health Service, National Toxicology Program (2008) 1,3-Butadiene. In: Report on carcinogens, 11th edn. http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s025buta.pdf. Accessed 27 July 2008

  2. DFG (Deutsche Forschungsgemeinschaft) (2007) List of MAK- and BAT-values 2007. Wiley-VCH, Weinheim

    Google Scholar 

  3. IARC (1999) IARC Monograph Eval Carcinog Risks Hum 71:109–227

  4. Kim SR, Dominici F, Buckley TJ (2007) Environ Res 105:291–299

    Article  CAS  Google Scholar 

  5. Tang S, Frank BP, Lanni T, Rideout G, Meyer N, Beregszaszy C (2007) Environ Sci Technol 41:5037–5041

    Article  CAS  Google Scholar 

  6. Brunnemann KD, Kagan MR, Cox JE, Hoffmann D (1990) Carcinogenesis 11:1863–1888

    Article  CAS  Google Scholar 

  7. Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R (2006) Chem Res Toxicol 19:511–520

    Article  CAS  Google Scholar 

  8. Boogaard PJ, vanSittert NJ, Megens HJ (2001) Chem Biol Interact 135–136:695–701

    Article  Google Scholar 

  9. McDonald JD, Bechtold WE, Krone JR, Blackwell WB, Kracko DA, Henderson RF (2004) J Anal Toxicol 28:168–173

    CAS  Google Scholar 

  10. Henderson RF, Thornton-Munning JR, Bechtold WE, Dahl AR (1996) Toxicology 113:17–22

    Article  CAS  Google Scholar 

  11. Albertini RJ, Sram RJ, Vacek PM, Lynch J, Wright M, Nicklas JA, Boogaard PJ, Henderson RF, Swenberg JA, Tates AD, Ward JB (2001) Chem Biol Interact 135–136:429–453

    Article  Google Scholar 

  12. Albertini RJ, Sram RJ, Vacek PM, Lynch J, Rossner P, Nicklas JA, McDonald JD, Boysen G, Georgieva N, Swenberg JA (2007) Chem Biol Interact 166:63–77

    Article  CAS  Google Scholar 

  13. Sapkota A, Halden RU, Dominici F, Groopman JD, Buckley TJ (2006) Chem Biol Interact 160:70–79

    Article  CAS  Google Scholar 

  14. Urban M, Gilch G, Schepers G, van Miert E, Scherer G (2003) J Chromatogr B 796:131–140

    Article  CAS  Google Scholar 

  15. van Sittert NJ, Megens HJ, Watson WP, Boogaard PJ (2000) Toxicol Sci 56:189–202

    Article  Google Scholar 

  16. Fustinoni S, Perbellini L, Soleo L, Manno M, Foa V (2004) Toxicol Lett 149:353–360

    Article  CAS  Google Scholar 

  17. US Department of Health and Human Services, Public Health Service, National Toxicology Program (2008) Acrylonitrile. In: Report on carcinogens, 11th edn. http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s004acry.pdf. Accessed 27 July 2008

  18. IARC (1999) IARC Monograph Eval Carcinog Risks Hum 71:43–109

  19. Collins JJ, Acquavella JF (1998) Scand J Work Environ Health 24(Suppl. 2):63–70

    Google Scholar 

  20. Office for Official Publications of the European Communities (2004) European Union risk assessment report: acrylonitrile. http://europa.eu.int. Accessed 27 July 2008

  21. Hoffmann D, Hoffmann I, El-Bayoumy K (1997) Chem Res Toxicol 14:767–790

    Article  CAS  Google Scholar 

  22. Schettgen T, Broding HC, Angerer J, Drexler H (2002) Toxicol Lett 134:65–70

    Article  CAS  Google Scholar 

  23. Fennell TR, MacNeela JP, Morris RW, Watson M, Thompson CL, Bell DA (2000) Cancer Epidemiol Biomarker Prev 9:705–712

    CAS  Google Scholar 

  24. Bergmark E (1997) Chem Res Toxicol 10:78–84

    Article  CAS  Google Scholar 

  25. Perez HL, Segerbäck D, Ostermann-Golkar S (1999) Chem Res Toxicol 12:869–873

    Article  CAS  Google Scholar 

  26. Ostermann-Golkar SM, MacNeela JP, Turner MJ, Walker VE, Swenberg JA, Sumner SJ, Youtsey N, Fennell TR (1994) Carcinogenesis 15:2701–2707

    Article  Google Scholar 

  27. Lewalter J (1996) Int Arch Occup Environ Health 68:519–530

    Article  CAS  Google Scholar 

  28. van Sittert NJ (1996) N-2-cyanoethylvaline, N-2-hydroxyethylvaline, N-methylvaline in blood. In: Angerer J, Schaller KH (eds) Analyses of hazardous substances in biological materials, vol 6. Wiley-VCH, Weinheim

    Google Scholar 

  29. Sumner SCJ, Selvaraj L, Nauhaus SK, Fennell TR (1997) Chem Res Toxicol 10:1152–1160

    Article  CAS  Google Scholar 

  30. Jakubowski M, Linhart I, Pielas G, Kopecky J (1987) Br J Ind Med 44:834–840

    CAS  Google Scholar 

  31. Boogaard PJ (2008) Occup Environ Med 65:221–222

    Article  Google Scholar 

  32. Larsen K (1972) Clin Chim Acta 41:209–217

    Article  CAS  Google Scholar 

  33. Müller M (2001) Cotinine. In: Angerer J, Schaller KH (eds) Analyses of hazardous substances in biological materials, vol 8. Wiley-VCH, Weinheim

    Google Scholar 

  34. Scherer G (1999) Cotinine. In: Angerer J, Schaller KH (eds) Analyses of hazardous substances in biological materials, vol 7. Wiley-VCH, Weinheim

    Google Scholar 

  35. Schettgen T, Musiol A, Alt A, Kraus T (2008) J Chromatogr B 863:283–292

    Article  CAS  Google Scholar 

  36. Bentayeb K, Batlle R, Sanchez C, Nerin C, Domeno C (2008) J Chromatogr B 869(1–2):1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Ms. Kathy Bischof for kindly reviewing this manuscript and Ms. Kerstin Gerards for skilful analysis of urinary creatinine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schettgen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schettgen, T., Musiol, A., Alt, A. et al. A method for the quantification of biomarkers of exposure to acrylonitrile and 1,3-butadiene in human urine by column-switching liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 393, 969–981 (2009). https://doi.org/10.1007/s00216-008-2510-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2510-1

Keywords

Navigation