Skip to main content

Advertisement

Log in

Absolute integrated intensities of vapor-phase hydrogen peroxide (H2O2) in the mid-infrared at atmospheric pressure

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report quantitative infrared spectra of vapor-phase hydrogen peroxide (H2O2) with all spectra pressure-broadened to atmospheric pressure. The data were generated by injecting a concentrated solution (83%) of H2O2 into a gently heated disseminator and diluting it with pure N2 carrier gas. The water vapor lines were quantitatively subtracted from the resulting spectra to yield the spectrum of pure H2O2. The results for the ν6 band strength (including hot bands) compare favorably with the results of Klee et al. (J Mol. Spectrosc. 195:154, 1999) as well as with the HITRAN values. The present results are 433 and 467 cm-2 atm−1 (±8 and ±3% as measured at 298 and 323 K, respectively, and reduced to 296 K) for the band strength, matching well the value reported by Klee et al. (S = 467 cm−2 atm−1 at 296 K) for the integrated band. The ν1 + ν5 near-infrared band between 6,900 and 7,200 cm−1 has an integrated intensity S = 26.3 cm−2 atm−1, larger than previously reported values. Other infrared and near-infrared bands and their potential for atmospheric monitoring are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharpe SW, Johnson TJ, Sams RL, Chu PM, Rhoderick GC, Johnson PA (2004) Appl Spectrosc 58:1452–1461

    Article  CAS  Google Scholar 

  2. Rinsland CP, Malathy-Devi V, Blake TA, Sams RL, Sharpe SW, Chiou L (2008) J Quant Spectrosc Radiat Transf 109:2511–2522

    Article  CAS  Google Scholar 

  3. Johnson TJ, Roberts BA, Kelly JF (2004) Appl Opt 43:638–650

    Article  Google Scholar 

  4. Kirk RE, Othmer DF, Kroschwitz JI, Howe-Grant M (eds) (2005) Kirk-Othmer encyclopedia of chemical technology, vol 13. Wiley, New York

    Google Scholar 

  5. Davies DD (1974) Can J Chem 52:1405–1414

    Article  Google Scholar 

  6. Connell PS, Wuebbles DJ, Change JS (1985) J Geophys Res 90:10726–10732

    Article  Google Scholar 

  7. Snow JA, Heikes BG, Shen H, O’Sullivan DW, Fried A, Walega J (2007) J Geophys Res. doi:10.1029/2006JD00746

  8. Rinsland CP, Coheur PF, Herbin H, Clerbaux C, Boone C, Bernath P, Chiou LS (2007) J Quant Spectrosc Radiat Transf 107:340–348

    Article  CAS  Google Scholar 

  9. von Kuhlmann R, Lawrence MG, Crutzen PJ, Rasch PJ (2003) J Geophys Res 108(D23):4729

    Article  CAS  Google Scholar 

  10. Ruey-Rong L, Gorse RA, Sauer MC, Sheffield G (1979) J Phys Chem 83:1803–1804

    Google Scholar 

  11. Takacs GA, Howard CJ (1984) J Phys Chem 88:2110–2116

    Article  CAS  Google Scholar 

  12. Lee M, Heikes BG, Jacob DJ, Sachse G, Anderson B (1997) J Geophys Res D 102:1301–1309

    Article  CAS  Google Scholar 

  13. Kleindienst TE, Shepson PB, Hodges DN, Nero CM, Arnts RR, Dasgupta PK, Hwang H, Kok GL, Lind JA, Lazrus AL, Mackay GI, Mayne LK, Schiff HI (1988) Environ Sci Technol 22:53–61

    Article  CAS  Google Scholar 

  14. Staffelbach TA, Kok GL, Heikes BG, McCuilly B, Mackay GI, Karecki DR, Schiff HI (1996) J Geophys Res 101:33–66

    Article  Google Scholar 

  15. Rothman LS, Jacquemart D, Barbe A et al (2005) J Quant Spectrosc Radiat Transf 96:139–204

    Article  CAS  Google Scholar 

  16. Johnson TJ, Wienhold FG, Burrows JP, Harris GW (1991) Appl Opt 30:407–413

    Article  CAS  Google Scholar 

  17. Sharpe SW, Kelly JF, Hartman JS, Gmachl C, Capasso F, Sivco DL, Baillargeon JN, Cho AY (1998) Opt Lett 23:1396–1398

    Article  CAS  Google Scholar 

  18. Williams SD, Johnson TJ, Gibbons TP, Kitchens CL (2007) Theor Chem Acc 117:283–290

    Article  CAS  Google Scholar 

  19. Easton MF, Mitchell AG, Wynne-Jones WFK (1952) Trans Faraday Soc 48:796–801

    Article  CAS  Google Scholar 

  20. Johnson TJ, Sharpe SW, Covert MA (2006) Rev Sci Instrum 77:094103. Erratum in Johnson TJ, Sharpe SW, Covert MA (2007) Rev Sci Instrum 78:019902

  21. Foster NS, Thompson SE, Valentine NB, Amonette JE, Johnson TJ (2004) Appl Spectrosc 58:203–211

    Article  CAS  Google Scholar 

  22. Johnson TJ, Valentine NB, Sharpe SW (2005) Chem Phys Lett 403:152–155

    Article  CAS  Google Scholar 

  23. Johnson TJ, Sams RL, Blake TA, Sharpe SW, Chu PM (2002) Appl Opt 41:2831–2839

    Article  CAS  Google Scholar 

  24. Birk M, Hausmann D, Wagner G, Johns JW (1996) Appl Opt 35:2971–2985

    Article  CAS  Google Scholar 

  25. Chase DB (1984) Appl Spectrosc 38:491–494

    Article  CAS  Google Scholar 

  26. Giguère PA (1950) J Chem Phys 18:88–92

    Article  Google Scholar 

  27. Camy-Peyret C, Flaud J-M, Johns JWC, Noël M (1992) J Mol Spectrosc 155:84–104

    Article  CAS  Google Scholar 

  28. Hougen JT (1984) Can J Phys 62:1392–1402

    CAS  Google Scholar 

  29. Redington RL, Olson WB, Cross PC (1962) J Chem Phys 36:1311–1326

    Article  CAS  Google Scholar 

  30. Chackerian C, Sharpe SW, Blake TA (2003) J Quant Spectrosc Radiat Transf 82:429–441

    Article  CAS  Google Scholar 

  31. Johnson TJ, Disselkamp RS, Su Y-F, Fellows RJ, Alexander ML, Driver CL (2003) J Phys Chem A 107:6183–6190

    Article  CAS  Google Scholar 

  32. May RD (1991) J Quant Spectrosc Radiat Transfer 45:267–272

    Article  CAS  Google Scholar 

  33. Hillman JJ, Jennings DE, Olson WB, Goldman A (1986) J Mol Spectrosc 117:46–59

    Article  CAS  Google Scholar 

  34. Klee S, Winnewisser M, Perrin A, Flaud J-M (1999) J Mol Spectrosc 195:154–161

    Article  CAS  Google Scholar 

  35. Niki H, Maker PD, Savage CM, Breitenbach LP (1980) Chem Phys Lett 73:43–46

    Article  CAS  Google Scholar 

  36. Valero FPJ, Goorvitch FS, Bonomo FS, Boese RW (1981) Appl Opt 20:4097–4101

    Article  CAS  Google Scholar 

  37. Adams D, Brown GP, Fritz C, Todd TR (1998) Pharm Eng 18:1–11

    Article  Google Scholar 

  38. Corveleyn S, Vandenbossche GMR, Remon JP (1997) Pharm Res 14:294–298

    Article  CAS  Google Scholar 

  39. Johnson TJ, Masiello T, Sharpe SW (2006) Atmos Chem Phys 6:2581–2591

    CAS  Google Scholar 

  40. Hagen CL, Sanders ST (2007) Meas Sci Technol 18:1992–1998

    Article  CAS  Google Scholar 

  41. Rogers JD (1984) J Phys Chem 88:526–530

    Article  CAS  Google Scholar 

  42. Kjaergaard HG, Goddard JD, Henry BR (1991) J Chem Phys 95:5556–5564

    Article  CAS  Google Scholar 

  43. Wehrum WL (1993) Process Saf Prog 12:199–202

    Article  CAS  Google Scholar 

  44. Richter D, Fried A, Wert BP, Walega JG, Tittel FK (2002) Appl Phys B 75:281–288

    Article  CAS  Google Scholar 

  45. Wert BP, Fried A, Rauenbuehler S, Walega J, Henry B (2003) J Geophys Res 108(12):4350–4362

    Article  CAS  Google Scholar 

  46. Werle PW, Mazzinghi P, D’Amato F, De Rosa M, Maurer K, Slemr F (2004) Spectrochim Acta A 60:1685–1705

    Article  CAS  Google Scholar 

  47. Johnson TJ, Wienhold FG, Burrows JP, Harris GW, Burkhard H (1991) J Phys Chem 95:6499–6502

    Article  CAS  Google Scholar 

  48. Bitter M, Ball SM, Povey IM, Jones RL (2005) Atmos Chem Phys 5:2547–2560

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Jean-Michel Régimbal of John Abbott College in Sainte-Anne-de-Bellevue in Montreal for helpful advice. PNNL is operated for the US Department of Energy by the Battelle Memorial Institute under contract DE-AC06-76RLO 1830. This work was supported by the Strategic Environmental Research and Development Program (SERDP) sustainable infrastructure program. The work was also supported by the DOE NA-22 program and we thank both sponsors for their support. The experiments were performed at the W.R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by DOE's Office of Biological and Environmental Research and located at PNNL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, T.J., Sams, R.L., Burton, S.D. et al. Absolute integrated intensities of vapor-phase hydrogen peroxide (H2O2) in the mid-infrared at atmospheric pressure. Anal Bioanal Chem 395, 377–386 (2009). https://doi.org/10.1007/s00216-009-2805-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2805-x

Keywords

Navigation