Skip to main content
Log in

Surface-enhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering was used as a spectroscopic tool to investigate the changes brought upon cytochrome P450BSß after fatty acid binding. Differences in the spectra of substrate-free and substrate-bound enzyme were observed indicating the potential for this method to be used in the screening of P450 substrates. In particular, the binding characteristics of myristic acid, an inherent substrate, and hydroxylauric acid, a product of fatty acid oxidation, towards P450BSß in the presence of H2O2 were investigated. Specific spectral changes could be assigned to changes in the heme environment only for myristic acid, indicating an occurrence of oxidation process characteristic for the enzymatic substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Moskovits M (1985) Rev Mod Phys 57:783

    Article  CAS  Google Scholar 

  2. Xu H, Aizpurua J, Kall M, Apell P (2000) Phys Rev E 62:4318

    Article  CAS  Google Scholar 

  3. Itoh T, Kikkawa Y, Biju V, Ishikawa M, Ikehata A, Ozaki Y (2006) J Phys Chem B 110:2153

    Google Scholar 

  4. Habuchi S, Cotlet M, Gronheid R, Dirix G, Michiels J, Vanderleyden J, De Schryver FC, Hofkens J (2003) J Am Chem Soc 125:8446

    Article  CAS  Google Scholar 

  5. Dieringer JA, McFarland AD, Shah NC et al (2006) Faraday Discuss 132:9

    Article  CAS  Google Scholar 

  6. Graham D, Faulds F, Smith WE (2006) Chem Commun (Camb) 4363

  7. Hering K, Cialla D, Ackermann K et al (2008) Anal Bioanal Chem 390:113

    Article  CAS  Google Scholar 

  8. Stuart DA, Haes AJ, Yonzon CR et al (2005) IEE Proc Nanobiotechnol 152:1

    Article  Google Scholar 

  9. Smith WE (2008) Chem Soc Rev 37:955

    Article  CAS  Google Scholar 

  10. Hering KK, Moller R, Fritzsche W et al (2008) Chemphyschem 9:867

    Article  CAS  Google Scholar 

  11. Fruk L, Grondin A, Smith WE, et al. (2002) Chem Commun (Camb) 2100

  12. Faulds K, Fruk L, Robson DC et al (2006) Faraday Discuss 132:261

    Article  CAS  Google Scholar 

  13. Chourpa I, Lei FH, Dubois P et al (2008) Chem Soc Rev 37:993

    Article  CAS  Google Scholar 

  14. Sha MY, Xu H, Penn SG et al (2007) Nanomed 2:725

    Article  CAS  Google Scholar 

  15. Aroca RF, Alvarez-Puebla RA, Pieczonka N et al (2005) Adv Colloid Interface Sci 116:45

    CAS  Google Scholar 

  16. Hildebrandt P, Stockburger M (1984) J Phys Chem 88:5935

    Article  CAS  Google Scholar 

  17. Lee PC, Meisel D (1982) J Phys Chem 86:3391

    Article  CAS  Google Scholar 

  18. Lu L, Randjelovic I, Capek R et al (2005) Chem Mat 17:5731

    Article  CAS  Google Scholar 

  19. Vogel E, Kiefer W, Deckert V et al (1998) J Raman Spectrosc 29:693

    Article  CAS  Google Scholar 

  20. Yu Q, Guan P, Qin D et al (2008) Nano Letters 8:1923

    Article  CAS  Google Scholar 

  21. Stöckle RM, Deckert V, Fokas C et al (2000) Appl Spectrosc 54:1577

    Article  Google Scholar 

  22. Han XX, Kitahama Y, Tanaka Y et al (2008) Anal Chem 80:6567

    Article  CAS  Google Scholar 

  23. Ingram A, Byers L, Faulds K et al (2008) J Am Chem Soc 130:11846

    Article  CAS  Google Scholar 

  24. Ingram AM, Stirling K, Faulds K et al (2006) Org Biomol Chem 4:2869

    Article  CAS  Google Scholar 

  25. Moore BD, Stevenson L, Watt A et al (2004) Nat Biotechnol 22:1133

    Article  CAS  Google Scholar 

  26. Dunford HB (1999) Heme peroxidases. Wiley, New York

    Google Scholar 

  27. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947

    Article  CAS  Google Scholar 

  28. Bernhardt R (2006) J Biotechnol 124

  29. Guengerich FP (2002) Nat Rev Drug Discov 1:359

    Article  CAS  Google Scholar 

  30. Bjerneld EJ, Murty KV, Prikulis J et al (2002) Chemphyschem 3:116

    Article  CAS  Google Scholar 

  31. Feis A, Marzocchi MP, Paoli M et al (1994) Biochemistry 33:4577

    Article  CAS  Google Scholar 

  32. Murgida DH, Hildebrandt P (2004) Acc Chem Res 37:854

    Article  CAS  Google Scholar 

  33. Macdonald IDG, Munro AW, Smith WE (1998) Biophys J 74:3241

    Article  CAS  Google Scholar 

  34. Gandubert VJ, Torres E, Niemeyer CM (2008) J Mater Chem 18:3824

    Article  CAS  Google Scholar 

  35. Matsunaga I, Ueda A, Sumimoto T et al (2001) Arch Biochem Biophys 394:45

    Article  CAS  Google Scholar 

  36. Matsunaga I, Sumimoto T, Ueda A et al (2000) Lipids 35:365

    Article  CAS  Google Scholar 

  37. Haines DC, Tomchick DR, Machius M et al (2001) Biochemistry 40:13456

    Article  CAS  Google Scholar 

  38. Lee D-S, Yamada A, Sugimoto H et al (2003) J Biol Chem 278:9761

    Article  CAS  Google Scholar 

  39. Meunier B (1992) Chem Rev 92:1411

    Article  CAS  Google Scholar 

  40. Iain DGM, Smith WE, Andrew WM (1996) FEBS Lett 396:196

    Article  Google Scholar 

  41. Macdonald IDG, Smith WE (1996) Langmuir 12:706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support through the Federal Ministry of Education and Research (BMBF) grant “Markerfreie Zelldiagnostik mit Nanometerauflösung” (0312032A and 0312032B). This work was supported in part by the Zentrum für Angewandte Chemische Genomik (ZACG), a joint research initiative founded by the European Union and the Ministry of Innovation and Research of the state North Rhine-Westphalia. CMN thanks Max Planck Society for financial support of a Max Planck Fellow research group at the Max Planck Institute of Molecular Physiology, Dortmund. LF was supported by Marie Curie International Incoming Fellowship (project 514582).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ljiljana Fruk or Volker Deckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailo, E., Fruk, L., Niemeyer, C.M. et al. Surface-enhanced Raman scattering as a tool to probe cytochrome P450-catalysed substrate oxidation. Anal Bioanal Chem 394, 1797–1801 (2009). https://doi.org/10.1007/s00216-009-2866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2866-x

Keywords

Navigation