Skip to main content
Log in

Multivariate standard addition method solved by net analyte signal calculation and rank annihilation factor analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article describes the use of the net analyte signal (NAS) concept and rank annihilation factor analysis (RAFA) for building two different multivariate standard addition models called “SANAS” and “SARAF.” In the former, by the definition of a new subspace, the NAS vector of the analyte of interest in an unknown sample as well as the NAS vectors of samples spiked with various amounts of the standard solutions are calculated and then their Euclidean norms are plotted against the concentration of added standard. In this way, a simple linear standard addition graph similar to that in univariate calibration is obtained, from which the concentration of the analyte in the unknown sample and the analytical figures of merit are readily calculated. In the SARAF method, the concentration of the analyte in the unknown sample is varied iteratively until the contribution of the analyte in the response data matrix is completely annihilated. The proposed methods were evaluated by analyzing simulated absorbance data as well as by the analysis of two indicators in synthetic matrices as experimental data. The resultant predicted concentrations of unknown samples showed that the SANAS and SARAF methods both produced accurate results with relative errors of prediction lower than 5% in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wold S, Martens H, Wold H (1983) Lect Notes Math 973:286–293

    Article  Google Scholar 

  2. Beebe KR, Kowalski BR (1987) Anal Chem 59:1007A–1017A

    Article  CAS  Google Scholar 

  3. Martens H, Naes T (1992) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  4. Booksh KS, Kowalski BR (1994) Anal Chem 66:782A–791A

    Article  CAS  Google Scholar 

  5. Galuska AA, Morrison GH (1984) Anal Chem 56:74–77

    Article  CAS  Google Scholar 

  6. Powley CR, George SW, Ryan TW, Buck RC (2005) Anal Chem 77:6353–6358

    Article  CAS  Google Scholar 

  7. Zhang TM, Yuan B, Liang YZ, Cao J, Pan CX, Ying B, Lu DY (2007) Anal Sci 23:581–587

    Article  CAS  Google Scholar 

  8. Larsen NR, Hansen EH (1976) Anal Chim Acta 84:31–36

    Article  CAS  Google Scholar 

  9. Franke JP, Zeeuw RAD, Hakkert R (1978) Anal Chem 50:1374–1380

    Article  CAS  Google Scholar 

  10. Janatsch G, Kruse-Jarres JD, Marbach R, Heise HM (1989) Anal Chem 61:2016–2023

    Article  CAS  Google Scholar 

  11. Haaland DM, Robinson MR, Koepp GW, Thomas EV, Eaton RP (1992) Appl Spectrosc 46:1575–1578

    Article  CAS  Google Scholar 

  12. Isaksson T, Miller CE, Næs T (1992) Appl Spectrosc 46:1685–1694

    Article  CAS  Google Scholar 

  13. Pataca LCM, Neto WB, Marcucci MC, Poppi RJ (2007) Talanta 71:1926–1931

    Article  CAS  Google Scholar 

  14. Saxberg BEH, Kowalski BR (1979) Anal Chem 51:1031–1038

    Article  CAS  Google Scholar 

  15. Gerlach RW, Kowalski BR (1982) Anal Chim Acta 134:119–127

    Article  CAS  Google Scholar 

  16. Bechmann IE, Norgaard L, Ridder C (1995) Anal Chim Acta 304:229–236

    Article  CAS  Google Scholar 

  17. Osten DW, Kowalski BR (1985) Anal Chem 57:908–917

    Article  CAS  Google Scholar 

  18. Xie Y, Wang J, Liang Y, Ge K, Yu R (1993) Anal Chim Acta 281:207–218

    Article  CAS  Google Scholar 

  19. Sena MM, Trevisan MG, Poppi RJ (2006) Talanta 68:1707–1712

    Article  CAS  Google Scholar 

  20. Comas E, Gimeno RA, Ferre J, Marce RM, Borrull F, Rius FX (2003) J Chromatogr A 988:277–284

    Article  CAS  Google Scholar 

  21. Booksh K, Henshaw JM, Burgess LW, Kowalski BR (1995) J Chemom 9:263–282

    Article  CAS  Google Scholar 

  22. Wu HL, Yu RQ, Shibukawa M, Oguma K (2000) Anal Sci 16:217–220

    Article  CAS  Google Scholar 

  23. Lorber A (1986) Anal Chem 58:1167–1172

    Article  CAS  Google Scholar 

  24. Lorber A, Faber K, Kowalski BR (1997) Anal Chem 69:1620–1626

    Article  CAS  Google Scholar 

  25. Berger J, Koo TW, Itzkan I, Feld MS (1998) Anal Chem 70:623–627

    Article  CAS  Google Scholar 

  26. Xu L, Schechter I (1997) Anal Chem 69:3722–3730

    Article  CAS  Google Scholar 

  27. Goicoechea HC, Olivieri AC (1999) Anal Chem 71:4361–4368

    Article  CAS  Google Scholar 

  28. Ferre J, Rius FX (1998) Anal Chem 70:1999–2007

    Article  CAS  Google Scholar 

  29. Goicoechea HC, Olivieri AC (1999) Analyst 124:725–731

    Article  CAS  Google Scholar 

  30. Faber NM, Ferre J, Boque R, Kalivas JH (2003) Trends Anal Chem 22:352–361

    Article  CAS  Google Scholar 

  31. Goicoechea HC, Olivieri AC (2001) Chemom Intell Lab Syst 56:73–81

    Article  CAS  Google Scholar 

  32. Marsili NR, Sobrero MS, Goicoechea HC (2003) Anal Bioanal Chem 376:126–133

    CAS  Google Scholar 

  33. Truyols GV, Torres-Lapasio JR, Garcya-Alvarez-Coque MC (2003) J Chromatogr A 991:47–59

    Article  CAS  Google Scholar 

  34. Hemmateenejad B, Ghavami R, Miri R, Shamsipur M (2006) Talanta 68:1222–1229

    Article  CAS  Google Scholar 

  35. Dela Pena AM, Mansilla AE, Valenzuela MIAA, Goicoechea HC, Olivieri AC (2002) Anal Chim Acta 463:75–88

    Article  Google Scholar 

  36. Hemmateenejad B, Safarpour MA, Mehranpour A (2005) Anal Chim Acta 535:275–285

    Article  CAS  Google Scholar 

  37. Faber NM (2000) Chemom Intell Lab Syst 50:107–114

    Article  CAS  Google Scholar 

  38. Ho CN, Christian CD, Davidson ER (1978) Anal Chem 50:1108–1113

    Article  CAS  Google Scholar 

  39. Ferre J, Faber NM (2003) J Chemom 17:603–607

    Article  CAS  Google Scholar 

  40. Elbergali J, Kubista M (1999) Anal Chim Acta 379:143–158

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Financial support of this project by the Iran National Science Foundation (Grant No. 85123/22) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Hemmateenejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmateenejad, B., Yousefinejad, S. Multivariate standard addition method solved by net analyte signal calculation and rank annihilation factor analysis. Anal Bioanal Chem 394, 1965–1975 (2009). https://doi.org/10.1007/s00216-009-2870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2870-1

Keywords

Navigation