Skip to main content
Log in

Dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for the rapid and sensitive determination of UV filters in environmental water samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The performance of the dispersive liquid–liquid microextraction (DLLME) technique for the determination of eight UV filters and a structurally related personal care species, benzyl salicylate (BzS), in environmental water samples is evaluated. After extraction, analytes were determined by gas chromatography combined with mass spectrometry detection (GC-MS). Parameters potentially affecting the performance of the sample preparation method (sample pH, ionic strength, type and volume of dispersant and extractant solvents) were systematically investigated using both multi- and univariant optimization strategies. Under final working conditions, analytes were extracted from 10 mL water samples by addition of 1 mL of acetone (dispersant) containing 60 μL of chlorobenzene (extractant), without modifying either the pH or the ionic strength of the sample. Limits of quantification (LOQs) between 2 and 14 ng L−1, inter-day variability (evaluated with relative standard deviations, RSDs) from 9% to 14% and good linearity up to concentrations of 10,000 ng L−1 were obtained. Moreover, the efficiency of the extraction was scarcely affected by the type of water sample. With the only exception of 2-ethylhexyl-p-dimethylaminobenzoate (EHPABA), compounds were found in environmental water samples at concentrations between 6 ± 1 ng L−1 and 26 ± 2 ng mL−1.

GC-MS chromatogram corresponding to a spiked (50 ng L-1) ultrapure water sample

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salvador A, Chisvert A (2005) Anal Chim Acta 537:1–14

    Article  CAS  Google Scholar 

  2. Giokas DL, Salvador A, Chisvert A (2007) Trends Anal Chem 26:360–374

    Article  CAS  Google Scholar 

  3. Balmer ME, Buser HR, Müller MD, Poiger T (2005) Environ Sci Technol 39:953–962

    Article  CAS  Google Scholar 

  4. Salvador A, Chisvert A (2005) Anal Chim Acta 537:15–24

    Article  CAS  Google Scholar 

  5. Díaz-Cruz MS, Llorca M, Barceló D (2008) Trends Anal Chem 27:873–887

    Article  Google Scholar 

  6. Richardson SD (2008) Anal Chem 80:4373–4402

    Article  CAS  Google Scholar 

  7. Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2008) Anal Chem 80:1307–1315

    Article  CAS  Google Scholar 

  8. Cuderman P, Health E (2007) Anal Bioanal Chem 387:1343–1350

    Article  CAS  Google Scholar 

  9. Poiger T, Buser HR, Balmer ME, Bergqvist PA, Müller MD (2004) Chemosphere 55:951–963

    Article  CAS  Google Scholar 

  10. Trenholm RA, Vanderford BJ, Drewes JE, Snyder SA (2008) J Chromatogr A 1190:253–262

    Article  CAS  Google Scholar 

  11. Zenker A, Schmutz H, Fent K (2008) J Chromatogr A 1202:64–74

    Article  CAS  Google Scholar 

  12. Giokas DL, Sakkas VA, Albanis TA (2004) J Chromatogr A 1026:289–293

    Article  CAS  Google Scholar 

  13. Rodil R, Moeder M (2008) Anal Chim Acta 612:152–159

    Article  CAS  Google Scholar 

  14. Plagellat C, Kupper T, Furrer R, Alencastro LF, Grandjean D, Tarradellas J (2006) Chemosphere 62:915–925

    Article  CAS  Google Scholar 

  15. Nieto A, Borrull F, Marcé RM, Pocurull E (2009) J Chromatogr A 1216:5619–5625

    Article  CAS  Google Scholar 

  16. Buser HR, Balmer ME, Schmid P, Kohler M (2006) Environ Sci Technol 40:1427–1431

    Article  CAS  Google Scholar 

  17. Klammer H, Schlecht C, Wuttke W, Schmutzler C, Gotthardt I, Köhrle J, Jarry H (2007) Toxicology 238:192–199

    Article  CAS  Google Scholar 

  18. Díaz-Cruz MS, Barceló D (2009) Trends Anal Chem 28:708–717

    Article  Google Scholar 

  19. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W (2001) Environ Health Perspect 109:239–244

    Article  CAS  Google Scholar 

  20. Lambropoulou DA, Giokas DL, Sakkas VA, Albanis TA, Karayannis MI (2002) J Chromatogr A 967:243–253

    Article  CAS  Google Scholar 

  21. Felix T, Hall BJ, Brodbelt JS (1998) Anal Chim Acta 371:195–203

    Article  CAS  Google Scholar 

  22. Negreira N, Rodríquez I, Ramil M, Rubí E, Cela R (2009) Anal Chim Acta 638:36–44

    Article  CAS  Google Scholar 

  23. Rodil R, Moeder M (2008) J Chromatogr A 1179:81–88

    Article  CAS  Google Scholar 

  24. Kawaguchi M, Ito R, Honda H, Endo N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2008) J Chromatogr A 1200:260–263

    Article  CAS  Google Scholar 

  25. Rodil R, Schrader S, Moeder M (2009) J Chromatogr A 1216:4887–4894

    Article  CAS  Google Scholar 

  26. Moeder M, Schrader S, Winkler U, Rodil R (2010) J Chromatogr A 1217:2925–2932

    Article  CAS  Google Scholar 

  27. Okanouchi N, Honda H, Ito R, Kawaguchi M, Saito K, Nakazawa H (2008) Anal Sci 24:627–630

    Article  CAS  Google Scholar 

  28. Vidal L, Chisvert A, Canals A, Salvador A (2010) Talanta 81:549–555

    Article  CAS  Google Scholar 

  29. Rezaee M, Assadi Y, Hosseini M-RM, Aghaee E, Ahmadi F, Berijani S (2006) J Chromatogr A 1116:1–9

    Article  CAS  Google Scholar 

  30. Rezaee M, Yamini Y, Faraji M (2010) J Chromatogr A 1217:2342–2357

    Article  CAS  Google Scholar 

  31. Zang XH, Wu QH, Zhang MY, Xi GH, Wang Z (2009) Chin J Anal Chem 37:161–168

    Article  CAS  Google Scholar 

  32. Tarazona I, Chisvert A, León Z, Salvador A (2010) J Chromatogr A, in press; doi:10.1016/j.chroma.2010.05.047

Download references

Acknowledgments

Financial support from the Spanish Government and EU FEDER funds (project CTQ2009-08377) is acknowledged. N.N. is grateful for an FPU grant from the Spanish Ministry of Education and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rodríguez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negreira, N., Rodríguez, I., Rubí, E. et al. Dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry for the rapid and sensitive determination of UV filters in environmental water samples. Anal Bioanal Chem 398, 995–1004 (2010). https://doi.org/10.1007/s00216-010-4009-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4009-9

Keywords

Navigation