Skip to main content
Log in

Silicone discs as disposable enrichment probes for gas chromatography-mass spectrometry determination of UV filters in water samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work describes an effective, low solvent consumption and affordable sample preparation approach for the determination of eight UV filters in surface and wastewater samples. It involves sorptive extraction of target analytes in a disposable, technical grade silicone disc (5 mm diameter × 0.6 mm thickness) followed by organic solvent desorption, large volume injection (LVI), and gas chromatography-mass spectrometry determination. Final working conditions involved overnight extraction of 100-mL samples, containing 10% of methanol, followed by analytes desorption with 0.2 mL of ethyl acetate. The method provides linear responses between the limits of quantification (from 0.003 to 0.040 ng mL−1) and 10 ng mL−1, an intra-day precision below 13%, and low matrix effects for surface, swimming pool, and treated sewage water samples. Moreover, the extraction yields provided by silicone discs were in excellent agreement with those achieved using polydimethylsiloxane-covered stir bars. Several UV filters were found in surface and sewage water samples, with the maximum concentrations corresponding to octocrylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Richardson SD (2010) Anal Chem 82:4742–4774

    Article  CAS  Google Scholar 

  2. Giokas DL, Salvador A, Chisvert A (2007) Trends Anal Chem 26:360–374

    Article  CAS  Google Scholar 

  3. Díaz-Cruz MS, Llorca M, Barceló D (2008) Trends Anal Chem 27:873–887

    Article  Google Scholar 

  4. Balmer ME, Buser HR, Müller MD, Poiger T (2005) Environ Sci Technol 39:953–962

    Article  CAS  Google Scholar 

  5. Cuderman P, Health E (2007) Anal Bioanal Chem 387:1343–1350

    Article  CAS  Google Scholar 

  6. Poiger T, Buser HR, Balmer ME, Bergqvist PA, Müller MD (2004) Chemosphere 55:951–963

    Article  CAS  Google Scholar 

  7. Plagellat C, Kupper T, Furrer R, de Alencastro LF, Grandjean D, Tarradellas J (2006) Chemosphere 62:915–925

    Article  CAS  Google Scholar 

  8. Buser HR, Balmer ME, Schmid P, Kohler M (2006) Environ Sci Technol 40:1427–1431

    Article  CAS  Google Scholar 

  9. Zenker A, Schmutz H, Fent K (2008) J Chromatogr A 1202:64–74

    Article  CAS  Google Scholar 

  10. Nieto A, Borrull F, Marcé RM, Pocurull E (2009) J Chromatogr A 1216:5619–5625

    Article  CAS  Google Scholar 

  11. Fent K, Zenker A, Rapp M (2010) Environ Pollut 158:1817–1824

    Article  CAS  Google Scholar 

  12. Díaz-Cruz MS, Barceló D (2009) Trends Anal Chem 28:708–717

    Article  Google Scholar 

  13. Rodil R, Quintana JB, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2008) Anal Chem 80:1307–1315

    Article  CAS  Google Scholar 

  14. Liu H, Liu L, Xiong Y, Yang X, Luan T (2010) J Chromatogr A 1217:6747–6753

    Article  CAS  Google Scholar 

  15. Rodil R, Moeder M (2008) J Chromatogr A 1179:81–88

    Article  CAS  Google Scholar 

  16. Kawaguchi M, Ito R, Endo N, Sakui N, Okanouchi N, Saito K, Sato N, Shiozaki T, Nakazawa H (2006) Anal Chim Acta 557:272–277

    Article  CAS  Google Scholar 

  17. Kawaguchi M, Ito R, Honda H, Endo N, Okanouchi N, Saito K, Seto Y, Nakazawa H (2008) J Chromatogr A 1200:260–263

    Article  CAS  Google Scholar 

  18. Negreira N, Rodríguez I, Rubí E, Cela R (2010) Anal Bioanal Chem 398:995–1004

    Article  CAS  Google Scholar 

  19. Rodil R, Schrader S, Moeder M (2009) J Chromatogr A 1216:4887–4894

    Article  CAS  Google Scholar 

  20. Vidal L, Chisvert A, Canals A, Salvador A (2010) Talanta 81:545–549

    Article  Google Scholar 

  21. Baltussen E, Sandra P, David F, Cramers C (1999) J Microcolumn Sep 11:737–747

    Article  CAS  Google Scholar 

  22. Prieto A, Basauri O, Rodil R, Usobiaga A, Férnandez LA, Etxebarria N, Zuloaga O (2010) J Chromatogr A 1217:2642–2666

    Article  CAS  Google Scholar 

  23. Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2010) Anal Bioanal Chem 397:2833–2839

    Article  CAS  Google Scholar 

  24. Popp P, Bauer C, Paschke A, Montero L (2004) Anal Chim Acta 504:307–312

    Article  CAS  Google Scholar 

  25. Montero L, Popp P, Paschke A, Pawsliszyn J (2004) J Chromatogr A 1025:17–26

    Article  CAS  Google Scholar 

  26. Montes R, Rodríguez I, Rubí E, Cela R (2007) J Chromatogr A 1143:41–47

    Article  CAS  Google Scholar 

  27. Van Pinxteren MS, Montero L, Jäsch S, Paschke H, Popp P (2009) Anal Bioanal Chem 393:767–775

    Article  Google Scholar 

  28. Burger BV, Marz B, Roux M, Burger WJG (2006) J Chromatogr A 1121:259–267

    Article  CAS  Google Scholar 

  29. Carpinteiro I, Abuín B, Rodríguez I, Ramil M, Cela R (2010) J Chromatogr A 1217:7208–7214

    Article  CAS  Google Scholar 

  30. Paschke A, Schwab K, Brümmer J, Schüürmann G, Paschke H, Popp P (2006) J Chromatogr A 1124:187–195

    Article  CAS  Google Scholar 

  31. Schellin M, Popp P (2007) J Chromatogr A 1152:175–183

    Article  CAS  Google Scholar 

  32. Van Pinxteren MS, Paschke A, Popp P (2010) J Chromatogr A 1217:2589–2598

    Article  Google Scholar 

  33. Bicchi C, Cordero C, Rubiolo P, Sandra P (2003) J Sep Sci 26:1650–1656

    Article  CAS  Google Scholar 

  34. Giokas DL, Sakkas VA, Albanis TA (2004) J Chromatogr A 1026:289–293

    Article  CAS  Google Scholar 

  35. Pawliszyn J (1997) Solid phase microextraction: theory and practice. Wiley-VCH, Weinheim

    Google Scholar 

  36. Lambropoulou DA, Giokas DL, Sakkas VA, Albanis TA, Karayannis MI (2002) J Chromatogr A 967:243–253

    Article  CAS  Google Scholar 

  37. Negreira N, Canosa P, Rodríguez I, Ramil M, Rubí E, Cela R (2008) J Chromatogr A 1178:206–214

    Article  CAS  Google Scholar 

  38. Serodio P, Nogueira JMF (2004) Anal Chim Acta 517:21–32

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Spanish Government and EU funds (projects CTQ2009-08377 and DE2009-0020). N.N. thanks a FPU pre-doctoral contract to the Spanish Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negreira, N., Rodríguez, I., Rubí, E. et al. Silicone discs as disposable enrichment probes for gas chromatography-mass spectrometry determination of UV filters in water samples. Anal Bioanal Chem 400, 603–611 (2011). https://doi.org/10.1007/s00216-011-4763-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4763-3

Keywords

Navigation