Skip to main content
Log in

Laser-induced breakdown spectroscopy for polymer identification

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study aims at differentiating several organic materials, particularly polymers, by laser induced breakdown spectroscopy. The goal is to apply this technique to the fields of polymer recycling and cultural heritage conservation. We worked with some usual polymers families: polyethylene (PE), polypropylene (PP), polyoxymethylene, (POM), poly(vinyl chloride), polytetrafluoroethylene, polyoxyethylene (POE), and polyamide for the aliphatic ones, and poly(butylene terephthalate), acrylonitrile–butadiene–styrene, polystyrene, and polycarbonate for the aromatic ones. The fourth harmonic of a Nd:YAG laser (266 nm) in ambient air at atmospheric pressure was used. A careful analysis of the C2 Swan system (0,0) band in polymers containing no C–C (POM), few C–C (POE), or aromatic C–C linkages led us to the conclusion that the C2 signal might be native, i.e., the result of direct ablation from the sample. With use of these results, aliphatic and aromatic polymers could be differentiated. Further data treatments, such as properly chosen line ratios, principal component analysis, and partial least squares regression, were evaluated. It was shown that many polymers could be separated, including PE and PP, despite their similar chemical structures.

LIBS analysis for cultural heritage conservation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABS:

acrylonitrile–butadiene–styrene

ICCD:

intensified charge-coupled device

LIBS:

laser induced breakdown spectroscopy

NIR:

near IR

PA:

polyamide

PBT:

poly(butylene terephthalate)

PC:

polycarbonate

PCA:

principal component analysis

PdMS:

polydimethylsiloxane

PE:

polyethylene

PLS:

partial least squares

POE:

polyoxyethylene

POM:

polyoxymethylene

PP:

polypropylene

PS:

polystyrene

PTFE:

polytetrafluoroethylene

PVC:

poly(vinyl chloride)

SNR:

signal-to-noise ratio

References

  1. Goodship V (2007) Introduction to plastic recycling, 2nd edn. Woodhead, Cambridge

    Google Scholar 

  2. Eisenreich N, Rohe T (1996) Kunststoffe 2:222–224

    Google Scholar 

  3. Florestan J, Lachambre A, Mermilliod N, Boulou JC, Marfisi C (1994) Resour Conserv Recycl 10:67–74

    Article  Google Scholar 

  4. Hearn GL, Ballard JR (2005) Resour Conserv Recycl 44:91–98

    Article  Google Scholar 

  5. Shent H, Pugh RJ, Forssberg E (1999) Resour Conserv Recycl 25:85–109

    Article  Google Scholar 

  6. Wienke D, van den Broek W, Melssen W, Buydens L, Feldhoff R, Kantimm T, Huth-Fehre T, Quick L, Winter F, Cammann K (1995) Anal Chim Acta 25:85–109

    Google Scholar 

  7. Carretti E, Dei L (2004) Prog Org Coat 49:282–289

    Article  CAS  Google Scholar 

  8. Duran A, de Haro MC Jimenez, Perez-Rodriguez JL, Franquelo ML, Herrera LK, Justo A (2010) Archaeometry 52:286–307

    Article  CAS  Google Scholar 

  9. Bianchin S, Casellato U, Favaro M, Alessandro Vigato P, Perla Colombini M, Gautier G (2008) J Cult Herit 9:179–183

    Article  Google Scholar 

  10. Marras S, Pojana G, Ganzerla R, Marcomini A (2008) Microchem J 96:397–405

    Article  Google Scholar 

  11. Cremers DA, Radziemski LJ (2006) Handbook of laser-induced breakdown spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  12. Miziolek AW, Palleschi V, Schechter I (2006) Laser-Induced breakdown spectroscopy (LIBS); fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Fink H, Panne U, Niessner R (2002) Anal Chem 74:4334–4342

    Article  CAS  Google Scholar 

  14. Kaski S, Hakkanen H, Korppi-Tommola J (2004) J Anal At Spectrom 19:474–478

    Article  CAS  Google Scholar 

  15. Stepputat M, Noll R (2003) Appl Opt 42:6210–6220

    Article  CAS  Google Scholar 

  16. Bicchieri M, Nardone M, Russo PA, Sodo A, Corsi M, Cristoforetti G, Palleschi V, Salvetti A, Tognoni E (2001) Spectrochim Acta B 56:915–922

    Article  Google Scholar 

  17. Bruder R, L'Hermite D, Semerok A, Salmon L, Detalle V (2007) Spectrochim Acta B 62:1590–1596

    Article  Google Scholar 

  18. Brysbaert A, Melessanaki K, Anglos D (2006) J Archaeol Sci 33:1095–1104

    Article  Google Scholar 

  19. Duchêne S, Detalle V, Bruder R, Sirven JB (2010) Curr Anal Chem 6:60–65

    Article  Google Scholar 

  20. Bruder R, Detalle V, Coupry C (2007) J Raman Spectrosc 38:909–915

    Article  CAS  Google Scholar 

  21. Sattmann R, Monch I, Krause H, Noll R, Couris S, Hatziapostolou A, Mavromanolakis A, Fotakis C, Larrauri E, Miguel R (1998) Appl Spectrosc 52:456–461

    Article  CAS  Google Scholar 

  22. Rusak DA, Weaver KD, Taroli BL (2008) Appl Spectrosc 62:773–777

    Article  CAS  Google Scholar 

  23. Jasik J, Heitz J, Pedarnig JD, Veis P (2009) Spectrochim Acta B 64:1128–1134

    Article  Google Scholar 

  24. Anzano JM, Gornushkin IB, Smith BW, Winefordner JD (2000) Polym Eng Sci 40:2423–2429

    Article  CAS  Google Scholar 

  25. Anzano JM, Lasheras RJ, Bonilla B, Casas J (2008) Polym Test 25:705–710

    Article  Google Scholar 

  26. Tran M, Sun S, Smith BW, Winefordner JD (2001) J Anal At Spectrom 16:628–632

    Article  CAS  Google Scholar 

  27. Lazic V, Palucci A, Jovicevic S, Poggi C, Buono E (2009) Spectrochim Acta B 64:1028–1039

    Article  Google Scholar 

  28. St-Onge L, Sing R, Bechard S, Sabsabi M (1999) Appl Phys A 69:S913–S916

    CAS  Google Scholar 

  29. Baudelet M, Boueri M, Yu J, Mao SS, Piscitelli V, Mao X, Russo RE (2007) Spectrochim Acta B 62:1329–1334

    Article  Google Scholar 

  30. Vivien C, Hermann J, Perrone A, Boulmer-Leborgne C, Luches A (1998) J Phys D 31:1263–1272

    Article  CAS  Google Scholar 

  31. Abdelli-Messaci S, Kerdja T, Bendib A, Malek S (2005) Spectrochim Acta B 60:955–959

    Article  Google Scholar 

  32. Thareja RK, Dwivedi RK, Ebihara K (2002) Nucl Instrum Methods Phys Res B 192:301–310

    Article  CAS  Google Scholar 

  33. Dinescu G, Aldea E, De Giorgi ML, Luches A, Perrone A, Zocco A (1998) Appl Surf Sci 127–129:697–702

    Article  Google Scholar 

  34. Bruice PY (2010) Organic chemistry. Prentice Hall, Cambridge

    Google Scholar 

  35. Locke RJ, Morris JB, Forch BE, Miziolek AW (1990) Appl Opt 29:4887–4892

    Article  Google Scholar 

  36. Adamson M, Padmanabhan A, Godfrey GJ, Rehse SJ (2007) Spectrochim Acta B 62:1348–1360

    Article  Google Scholar 

  37. Portnov A, Rosenwaks S, Bar I (2003) Appl Opt 42:2835–2842

    Article  CAS  Google Scholar 

  38. Anzano J, Casanova ME, Bermúdez MS, Lasheras RJ (2006) Polym Test 25:623–627

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from ADEME (Agence de l'Environnement et de la Maîtrise de l'Énergie) and ANRT (Association Nationale de la Recherche et de la Technologie). We also want to especially acknowledge J. Yu and V. Motto-Ros (Laboratoire de Spectroscopie Ionique et Moléculaire, Lyon, France) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Holl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grégoire, S., Boudinet, M., Pelascini, F. et al. Laser-induced breakdown spectroscopy for polymer identification. Anal Bioanal Chem 400, 3331–3340 (2011). https://doi.org/10.1007/s00216-011-4898-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4898-2

Keywords

Navigation