Skip to main content
Log in

Cell membrane chromatography competitive binding analysis for characterization of α1A adrenoreceptor binding interactions

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new high α1A adrenoreceptor (α1AAR) expression cell membrane chromatography (CMC) method was developed for characterization of α1AAR binding interactions. HEK293 α1A cell line, which expresses stably high levels of α1AAR, was used to prepare the stationary phase in the CMC model. The HEK293 α1A/CMC-offline-HPLC system was applied to specifically recognize the ligands which interact with the α1AAR, and the dissociation equilibrium constants (K D) obtained from the model were (1.87 ± 0.13) × 10−6 M for tamsulosin, (2.86 ± 0.20) × 10−6 M for 5-methylurapidil, (3.01 ± 0.19) × 10−6 M for doxazosin, (3.44 ± 0.19) × 10−6 M for terazosin, (3.50 ± 0.21) × 10−6 M for alfuzosin, and (7.57 ± 0.31) × 10−6 M for phentolamine, respectively. The competitive binding study between tamsulosin and terazosin indicated that the two drugs interacted at the common binding site of α1AAR. However, that was not the case between tamsulosin and oxymetazoline. The results had a positive correlation with those from radioligand binding assay and indicated that the CMC method combined modified competitive binding could be a quick and efficient way for characterizing the drug–receptor interactions.

Chromatograms of mixed standard solution using an HEK293 α1A/CMC-offline-HPLC method

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hillman KL, Doze VA, Porter JE (2007) J Pharmacol Exp Ther 321:1062–1068

    Article  CAS  Google Scholar 

  2. Blue DR Jr, Bonhaus DW, Ford AP, Pfister JR, Sharif NA, Shieh IA, Vimont RL, Williams TJ, Clarke DE (1995) Brit J Pharmacol 115:283–294

    CAS  Google Scholar 

  3. Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo RR Jr (1995) Pharmacol Rev 47:267–270

    CAS  Google Scholar 

  4. Faure C, Pimoule C, Vallancien G, Langer SZ, Graham D (1994) Life Sci 54:1595–1605

    Article  CAS  Google Scholar 

  5. Price DT, Schwinn DA, Lomasney JW, Allen LF, Caron MG, Lefkowitz RJ (1993) J Urol 150:546–551

    CAS  Google Scholar 

  6. Chapple CR, Burt RP, Andersson PO, Greengrass P, Wyllie M, Marshall I (1994) BJU Int 74:585–589

    Article  CAS  Google Scholar 

  7. Kirby RS, Pool JL (1997) BJU Int 80:521–532

    Article  CAS  Google Scholar 

  8. Thiyagarajan M (2002) Pharmacology 65:119–128

    Article  CAS  Google Scholar 

  9. Leppik RA, Mynett A, Lazareno S, Birdsall NJM (2000) Mol Pharmacol 57:436–445

    CAS  Google Scholar 

  10. Moaddel R, Wainer IW (2008) Nat Protoc 4:197–205

    Article  Google Scholar 

  11. Moaddel R, Lu LL, Baynham M, Wainer IW (2002) J Chromatogr B 768:41–53

    Article  CAS  Google Scholar 

  12. Jozwiak K, Haginaka J, Moaddel R, Wainer IW (2002) Anal Chem 74:4618–4624

    Article  CAS  Google Scholar 

  13. Wang Y, Yuan BX, Deng XL, He LC, Wang SC, Zhang YY, Han QD (2006) Anal Bioanal Chem 386:2003–2011

    Article  CAS  Google Scholar 

  14. Yuan BX, Hou J, Yang GD, Zhao LM, He LC (2005) Chromatographia 61:381–384

    Article  CAS  Google Scholar 

  15. Wang Y, Yuan BX, Deng XL, He LC, Zhang YY, Han QD (2005) Anal Biochem 339:198–205

    Article  CAS  Google Scholar 

  16. Wang L, Ren J, Sun M, Wang SC (2010) J Pharm Biomed Anal 51:1032–1036

    Article  CAS  Google Scholar 

  17. Hou XF, Ren J, Wang SC, He LC (2010) Chromatographia 72:635–640

    Article  CAS  Google Scholar 

  18. Du H, He JY, Wang SC, He LC (2010) Anal Bioanal Chem 397:1947–1953

    Article  CAS  Google Scholar 

  19. Zhu WZ, Gao BB, Li HW, Zhang YY, Han QD (1999) Acta Pharmacol Sin 20:1025–1030

    CAS  Google Scholar 

  20. Lei BL, Zhang YY, Han QD (2001) Life Sci 69:301–308

    Article  CAS  Google Scholar 

  21. Xu Q, Zhang T, Han QD, Zhang YY (2003) Acta Physiol Sin 55:692–698

    CAS  Google Scholar 

  22. Varkondi E, Schafer E, Bokonyi G, Gyokeres T, Orfi L, Petak I, Pap A, Szokoloczi O, Keri G, Schwab R (2005) J Recept Signal Transduct 25:45–56

    Article  CAS  Google Scholar 

  23. Shimamura M, Hazato T, Ashino H, Yamamoto Y, Iwasaki E, Tobe H, Yamamoto K, Yamamoto S (2001) Biochem Biophys Res Commun 289:220–224

    Article  CAS  Google Scholar 

  24. Zhivkova Z, Russeva V (1998) J Chromatogr B 707:143–149

    Article  CAS  Google Scholar 

  25. Noctor G, Wainer IW, Hage DS (1992) J Chromatogr 577:305–315

    Article  CAS  Google Scholar 

  26. Martin DJ, Lluel P, Guillot E, Coste A, Jammes D, Angel I (1997) J Pharmacol Exp Ther 282:228–235

    CAS  Google Scholar 

  27. Richardson CD, Donatucci CF, Page SO, Wilson KH, Schwinn DA (1997) Prostate 33:55–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhang Yanming for his kind assistance and guidance. We are also grateful for financial support from the National Natural Science Foundation of China (grant numbers 30730110 and 30801450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Langchong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Ren, J., Wang, S. et al. Cell membrane chromatography competitive binding analysis for characterization of α1A adrenoreceptor binding interactions. Anal Bioanal Chem 400, 3625–3633 (2011). https://doi.org/10.1007/s00216-011-5026-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5026-z

Keywords

Navigation