Skip to main content
Log in

Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The liquid chromatography–mass spectrometry (LC-MS) analysis of complex samples such as biological fluid extracts is widespread when searching for new biomarkers as in metabolomics. The success of this hyphenation resides in the orthogonality of both separation techniques. However, there are frequent cases where compounds are co-eluting and the resolving power of mass spectrometry (MS) is not sufficient (e.g., isobaric compounds and interfering isotopic clusters). Different strategies are discussed to solve these cases and a mixture of eight compounds (i.e., bromazepam, chlorprothixene, clonapzepam, fendiline, flusilazol, oxfendazole, oxycodone, and pamaquine) with identical nominal mass (i.e., m/z 316) is taken to illustrate them. Among the different approaches, high-resolution mass spectrometry or liquid chromatography (i.e., UHPLC) can easily separate these compounds. Another technique, mostly used with low resolving power MS analyzers, is differential ion mobility spectrometry (DMS), where analytes are gas-phase separated according to their size-to-charge ratio. Detailed investigations of the addition of different polar modifiers (i.e., methanol, ethanol, and isopropanol) into the transport gas (nitrogen) to enhance the peak capacity of the technique were carried out. Finally, a complex urine sample fortified with 36 compounds of various chemical properties was analyzed by real-time 2D separation LC×DMS-MS(/MS). The addition of this orthogonal gas-phase separation technique in the LC-MS(/MS) hyphenation greatly improved data quality by resolving composite MS/MS spectra, which is mandatory in metabolomics when performing database generation and search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holland LA, Jorgenson JW (1995) Separation of nanoliter samples of biological amines by a comprehensive two-dimensional microcolumn liquid chromatography system. Anal Chem 67(18):3275–3283

    Article  CAS  Google Scholar 

  2. Giddings J (1995) Sample dimensionality—a predictor of order–disorder in component peak distribution in multidimensional separation. J Chromatogr A 703(1–2):3–15

    Article  CAS  Google Scholar 

  3. François I, Sandra K, Sandra P (2009) Comprehensive liquid chromatography: fundamental aspects and practical considerations–A review. Anal Chim Acta 641:14–31

    Article  Google Scholar 

  4. Cottingham K (2003) Ion mobility spectrometry rediscovered. Anal Chem 75(19):435A–439A

    Article  CAS  Google Scholar 

  5. Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129(11):984–994. doi:10.1039/b404531a

    Article  CAS  Google Scholar 

  6. Dwivedi P, Wu C, Matz LM, Clowers BH, Siems WF, Hill HH (2006) Gas-phase chiral separations by ion mobility spectrometry. Anal Chem 78(24):8200–8206. doi:10.1021/ac0608772

    Article  CAS  Google Scholar 

  7. Dong L, Shion H, Davis RG, Terry-Penak B, Castro-Perez J, van Breemen RB (2010) Collision cross-section determination and tandem mass spectrometric analysis of isomeric carotenoids using electrospray ion mobility time-of-flight mass spectrometry. Anal Chem 82(21):9014–9021. doi:10.1021/ac101974g

    Article  CAS  Google Scholar 

  8. Zhu M, Bendiak B, Clowers B, Hill HH (2009) Ion mobility-mass spectrometry analysis of isomeric carbohydrate precursor ions. Anal Bioanal Chem 394(7):1853–1867. doi:10.1007/s00216-009-2865-y

    Article  CAS  Google Scholar 

  9. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43(1):1–22. doi:10.1002/jms.1383

    Article  CAS  Google Scholar 

  10. Shvartsburg AA, Smith RD (2008) Fundamentals of traveling wave ion mobility spectrometry. Anal Chem 80(24):9689–9699. doi:10.1021/ac8016295

    Article  CAS  Google Scholar 

  11. Guevremont R (2004) High-field asymmetric waveform ion mobility spectrometry: a new tool for mass spectrometry. J Chromatogr A 1058(1–2):3–19. doi:10.1016/j.chroma.2004.08.119

    CAS  Google Scholar 

  12. Coy SL, Krylov EV, Schneider BB, Covey TR, Brenner DJ, Tyburski JB, Patterson AD, Krausz KW, Fornace AJ, Nazarov EG (2010) Detection of radiation-exposure biomarkers by differential mobility prefiltered mass spectrometry (DMS-MS). Int J Mass Spectrom 291(3):108–117. doi:10.1016/j.ijms.2010.01.013

    Article  CAS  Google Scholar 

  13. Blagojevic V, Chramow A, Schneider BB, Covey TR, Bohme DK (2011) Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Anal Chem 83(9):3470–3476. doi:10.1021/ac200100s

    CAS  Google Scholar 

  14. Rorrer LC III, Yost RA (2011) Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry. Int J Mass Spectrom 300:173–181. doi:10.1016/j.ijms.2010.04.002

    Article  CAS  Google Scholar 

  15. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int J Mass Spectrom 298(1–3):45–54. doi:10.1016/j.ijms.2010.01.006

    CAS  Google Scholar 

  16. Bieri S, Varesio E, Muñoz O, Veuthey J-L, Christen P (2006) Use of porous graphitic carbon column for the separation of natural isomeric tropane alkaloids by capillary LC and mass spectrometry. J Pharm Biomed Anal 40(3):545–551. doi:10.1016/j.jpba.2005.07.007

    Article  CAS  Google Scholar 

  17. Hopfgartner G (2011) Can MS fully exploit the benefits of fast chromatography? Bioanalysis 3(2):121–123. doi:10.4155/bio.10.191

    Article  CAS  Google Scholar 

  18. Leuthold LA, Grivet C, Allen M, Baumert M, Gr H (2004) Simultaneous selected reaction monitoring, MS/MS and MS3 quantitation for the analysis of pharmaceutical compounds in human plasma using chip-based infusion. Rapid Comm Mass Spectrom 18(17):1995–2000. doi:10.1002/rcm.1587

    Article  CAS  Google Scholar 

  19. Krylova N, Krylov E, Eiceman GA, Stone JA (2003) Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J Phys Chem A 107(19):3648–3654

    Article  CAS  Google Scholar 

  20. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem 82(5):1867–1880. doi:10.1021/ac902571u

    Article  CAS  Google Scholar 

  21. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur J Mass Spectrom 16(1):57–71. doi:10.1255/ejms.1025

    Article  CAS  Google Scholar 

Download references

Acknowledgments

EV and GH wish to thank M. Himmelsbach (visiting scientist in the LSMS group) for performing the FT-ICR-MS experiments as well as T. Bruderer (Ph.D. student in the LSMS group). GH also acknowledges R. Falchetto (Novartis) for his support with the FT-ICR-MS instrument. EV and GH would like to acknowledge Dionex (F. Steiner, M. Martin, and F. Sabini) for providing the UltiMate 3000 Dual RSLC system. Finally, the authors would also thank B.B. Schneider (AB Sciex) for his support with the DMS device. D. Simmons and L. Burton/R. Bonner (AB Sciex) for the MS resolution calculator and PeakView software support, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Varesio.

Additional information

Published in the special issue Analytical Sciences in Switzerland with guest editors P. Dittrich, D. Günther, G. Hopfgartner, and R. Zenobi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 505 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varesio, E., Le Blanc, J.C.Y. & Hopfgartner, G. Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry. Anal Bioanal Chem 402, 2555–2564 (2012). https://doi.org/10.1007/s00216-011-5444-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5444-y

Keywords

Navigation