Skip to main content
Log in

Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new method based on surface-enhanced Raman spectroscopy (SERS) has been developed for sensitive and rapid detection of melamine. Spherical magnetic-core gold-shell nanoparticles (AuNPs) and rod-shaped gold nanoparticles (nanorods) labeled with a Raman-active compound were used to form a complex with the melamine molecules. 5,5′-Dithiobis(2-nitrobenzoic acid) was used as Raman-active compound because it is readily adsorbed by a gold nanoparticle surface forming a self-assembled monolayer (SAM) and has strong Raman scattering at 1330 cm−1, because of the symmetric NO2 stretch. The calibration curve was obtained by plotting Raman band area at 1330 cm−1 against melamine concentration. A linear relationship was obtained with a high determination coefficient (R 2 = 0.997). The method was validated for linearity, sensitivity, precision (intra-day and inter-day repeatability), and recovery. In the model system, the limits of detection (LOD) and quantification (LOQ) were 0.38 and 1.27 mg L−1, respectively. For melamine-spiked milk samples, LOD and LOQ values were 0.39 mg L−1 and 1.30 mg L−1, respectively. Intra and inter-day precision were 3.73 and 4.94 %, respectively. This method was applied to samples of skimmed milk that had been spiked with melamine at different concentrations. The recovery of the method was 95–109 % in the concentration range 2–15 mg L−1, and average RSD was 1.71 %. Total analysis time was less than 15 min.

Melamine acts as a cross linker molecule between the magnetic AuNPs and Raman-labeled nanorods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown CA, Jeong KS, Poppenga RH, Puschner B, Miller DM, Ellis AE, Kang KI, Sum S, Cistola AM, Brown SA (2007) Outbreaks of renal failure associated with melamine and cyanuric acid in dogs and cats in 2004 and 2007. J Vet Diagn Invest 19(5):525–531

    Article  Google Scholar 

  2. Cianciolo RE, Bischoff K, Ebel JG, Van Winkle TJ, Goldstein RE, Serfilippi LM (2008) Clinicopathologic, histologic, and toxicologic findings in 70 cats inadvertently exposed to pet food contaminated with melamine and cyanuric acid. J Am Vet Med Assoc 233(5):729–737

    Article  CAS  Google Scholar 

  3. Ingelfinger JR (2008) Melamine and the global implications of food contamination. N Engl J Med 359(26):2745–2748. doi:10.1056/NEJMp0808410

    Article  CAS  Google Scholar 

  4. Xin H, Stone R (2008) TAINTED MILK SCANDAL Chinese Probe Unmasks High-Tech Adulteration With Melamine. Science 322(5906):1310–1311

    Article  CAS  Google Scholar 

  5. Chan EYY, Griffiths SM, Chan CW (2008) Public-health risks of melamine in milk products. Lancet 372(9648):1444–1445

    Article  CAS  Google Scholar 

  6. Melamine Pet Food Recall of 2007 (2011) http://www.fda.gov/oc/opacom/hottopics/petfood.html. Accessed 25.04.2012

  7. Sun F, Ma W, Xu L, Zhu Y, Liu L, Peng C, Wang L, Kuan H, Xu C (2010) Analytical methods and recent developments in the detection of melamine. Trends Anal Chem 29(11):1339–1349. doi:10.1016/j.trac.2010.06.011

    Article  Google Scholar 

  8. Puschner B, Poppenga RH, Lowenstine LJ, Filigenzi MS, Pesavento PA (2007) Assessment of melamine and cyanuric acid toxicity in cats. J Vet Diagn Invest 19(6):616–624

    Article  Google Scholar 

  9. He L, Liu Y, Lin M, Awika J, Ledoux DR, Li H, Mustapha A (2008) A new approach to measure melamine, cyanuric acid, and melamine cyanurate using surface enhanced Raman spectroscopy coupled with gold nanosubstrates. Sens Instrum Food Qual 2:66–71

    Article  Google Scholar 

  10. Kobayashi T, Okada A, Fujii Y, Niimi K, Hamamoto S, Yasui T, Tozawa K, Kohri K (2010) The mechanism of renal stone formation and renal failure induced by administration of melamine and cyanuric acid. Urol Res 38(2):117–125. doi:10.1007/s00240-010-0254-9

    Article  CAS  Google Scholar 

  11. Ai KL, Liu YL, Lu LH (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131(27):9496–9497. doi:10.1021/Ja9037017

    Article  CAS  Google Scholar 

  12. Garber EAE (2008) Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J Food Prot 71(3):590–594

    CAS  Google Scholar 

  13. Yan N, Zhou L, Zhu ZF, Chen XG (2009) Determination of melamine in dairy products, fish feed, and fish by capillary zone electrophoresis with diode array detection. J Agric Food Chem 57(3):807–811. doi:10.1021/Jf803429e

    Article  CAS  Google Scholar 

  14. Xia JG, Zhou NY, Liu YJ, Chen B, Wu YN, Yao SZ (2010) Simultaneous determination of melamine and related compounds by capillary zone electrophoresis. Food Control 21(6):912–918. doi:10.1016/j.foodcont.2009.12.009

    Article  CAS  Google Scholar 

  15. Li L, Li BX, Cheng D, Mao LH (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122(3):895–900. doi:10.1016/j.foodchem.2010.03.032

    Article  CAS  Google Scholar 

  16. Guo L, Zhong J, Jinmei W, Fu F, Chen G (2010) Visual detection of melamine in milk products by label-free gold nanoparticles. Talanta 82:1654–1658

    Article  CAS  Google Scholar 

  17. Ping H, Zhang MW, Li HK, Li SG, Chen QS, Sun CY, Zhang TH (2012) Visual detection of melamine in raw milk by label-free silver nanoparticles. Food Control 23(1):191–197

    Article  CAS  Google Scholar 

  18. Liu B, Lin M, Hao L (2010) Potential of SERS for rapid detection of melamine and cyanuric acid extracted from milk. Sens Instrum Food Qual 4:13–19

    Article  CAS  Google Scholar 

  19. Lin M, He L, Awika J, Yang L, Ledoux DR, Li H, Mustapha A (2008) Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J Food Sci 73(8):T129–T134. doi:10.1111/j.1750-3841.2008.00901.x

    Article  CAS  Google Scholar 

  20. Hu HB, Wang ZH, Pan L, Zhao SP, Zhu SY (2010) Ag-coated Fe3O4@SiO2 three-ply composite microspheres: synthesis, characterization, and application in detecting melamine with their surface-enhanced Raman scattering. J Phys Chem C 114(17):7738–7742. doi:10.1021/Jp100141c

    Article  CAS  Google Scholar 

  21. Cheng Y, Dong YY, Wu JH, Yang XR, Bai H, Zheng HY, Ren DM, Zou YD, Li M (2010) Screening melamine adulterant in milk powder with laser Raman spectrometry. J Food Compos Anal 23(2):199–202. doi:10.1016/j.jfca.2009.08.006

    Article  CAS  Google Scholar 

  22. Cheng Y, Dong YY (2011) Screening melamine contaminant in eggs with portable surface-enhanced Raman spectroscopy based on gold nanosubstrate. Food Control 22(5):685–689

    Article  CAS  Google Scholar 

  23. Braun G, Lee SJ, Dante M, Nguyen TQ, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129(20):6378–6379

    Article  CAS  Google Scholar 

  24. Gellner M, Kustner B, Schlucker S (2009) Optical properties and SERS efficiency of tunable gold/silver nanoshells. Vib Spectrosc 50(1):43–47

    Article  CAS  Google Scholar 

  25. Tamer U, Gundogdu Y, Boyaci IH, Pekmez K (2010) Synthesis of magnetic core-shell Fe3O4-Au nanoparticle for biomolecule immobilization and detection. J Nanopart Res 12(4):1187–1196. doi:10.1007/s11051-009-9749-0

    Article  CAS  Google Scholar 

  26. Yazgan NN, Boyaci IH, Temur E, Tamer U, Topcu A (2010) A high sensitive assay platform based on surface-enhanced Raman scattering for quantification of protease activity. Talanta 82(2):631–639. doi:10.1016/j.talanta.2010.05.023

    Article  CAS  Google Scholar 

  27. Driskell JD, Kwarta KM, Lipert RJ, Porter MD, Neill JD, Ridpath JF (2005) Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay. Anal Chem 77(19):6147–6154

    Article  CAS  Google Scholar 

  28. Jones VW, Kenseth JR, Porter MD, Mosher CL, Henderson E (1998) Microminiaturized immunoassays using atomic force microscopy and compositionally patterned antigen arrays. Anal Chem 70(7):1233–1241

    Article  CAS  Google Scholar 

  29. Long GL, Winefordner JD (1983) Limit of Detection. Anal Chem 55(7):712A–724A

    Article  CAS  Google Scholar 

  30. Tamer U, Boyaci IH, Temur E, Zengin A, Dincer I, Elerman Y (2011) Fabrication of magnetic gold nanorod particles for immunomagnetic separation and SERS application. J Nanopart Res 13(8):3167–3176

    Article  CAS  Google Scholar 

  31. Bozzi A, Dhananjeyan M, Guasaquillo I, Parra S, Pulgarin C, Weins C, Kiwi J (2004) Evolution of toxicity during melamine photocatalysis with TiO2 suspensions. J Photochem Photobiol A 162(1):179–185. doi:10.1016/S1010-6030(03)00352-6

    Article  CAS  Google Scholar 

  32. Zhu XL, Wang SH, Liu Q, Xu Q, Xu SX, Chen HL (2009) Determination of residues of cyromazine and its metabolite, melamine, in animal-derived food by gas chromatography-mass spectrometry with derivatization. J Agric Food Chem 57(23):11075–11080

    Article  CAS  Google Scholar 

  33. Ishiwata H, Inoue T, Yamazaki T, Yoshihira K (1987) Liquid-chromatographic determination of melamine in beverages. J Assoc Off Anal Chem 70(3):457–460

    CAS  Google Scholar 

  34. Ehling S, Tefera S, Ho IP (2007) High-performance liquid chromatographic method for the simultaneous detection of the adulteration of cereal flours with melamine and related triazine by-products ammeline, ammelide, and cyanuric acid. Food Addit Contam 24(12):1319–1325

    Article  CAS  Google Scholar 

  35. Rambla-Alegre M, Peris-Vicente J, Marco-Peiro S, Beltran-Martinavarro B, Esteve-Romero J (2010) Development of an analytical methodology to quantify melamine in milk using micellar liquid chromatography and validation according to EU Regulation 2002/654/EC. Talanta 81(3):894–900. doi:10.1016/j.talanta.2010.01.034

    Article  CAS  Google Scholar 

  36. Chen LX, Lou TT, Wang YQ, Li JH, Peng HL, Xiong H (2011) Rapid detection of melamine with 4-mercaptopyridine-modified gold nanoparticles by surface-enhanced Raman scattering. Anal Bioanal Chem 401(1):333–338

    Article  Google Scholar 

  37. Zhao H, Wu ZJ, Xue Y, Cao QA, Yang J, He YJ, Li XJ, Yuan ZB (2011) Colorimetric detection of melamine during the formation of gold nanoparticles. Biosens Bioelectron 26(5):2574–2578

    Article  Google Scholar 

  38. 2002/657/EC (2002) Comission decision of 12 August 2002 implementing council directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off J Eur Commun L221:8–36

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports provided by The Scientific and Technological Research Council of Turkey; Project Number: 110T584 and 108T794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İsmail Hakkı Boyacı.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazgan, N.N., Boyacı, İ.H., Topcu, A. et al. Detection of melamine in milk by surface-enhanced Raman spectroscopy coupled with magnetic and Raman-labeled nanoparticles. Anal Bioanal Chem 403, 2009–2017 (2012). https://doi.org/10.1007/s00216-012-5971-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5971-1

Keywords

Navigation