Skip to main content
Log in

Stacked and continuous helical self-assemblies of guanosine monophosphates detected by vibrational circular dichroism

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study was to characterize self-assembled structures of guanosine derivatives in aqueous solutions by vibrational circular dichroism (VCD) and electronic circular dichroism (ECD). Three guanosine derivatives were studied [5′-guanosine monophosphate (GMP), diphosphate (GDP), and triphosphate (GTP)] using a broad range of concentrations and various metal/guanosine ratios. VCD was used for the first time in this field and showed itself to be a powerful method for obtaining specific structural information in solution. It can also help to determine the impact that the cations have, when added to the solution, on the versatile structures of guanine derivatives in terms of their association and disassociation. Based on the markedly different intensities and signs of the VCD signals observed for different concentrations of guanosine derivatives, we propose various structures based on guanine quartets for high guanosine concentrations and high K+/guanosine ratios (i.e., columnar helical organization of the quartets, which are rearranged into a continuous helix). We performed a degenerate coupled oscillator (DCO) calculation to interpret the VCD spectra obtained and how they vary during the assembly of guanosine derivatives. The calculations correctly predicted the VCD spectra and enabled us to identify the structures of the metal cation/guanosine monophosphate aggregates. ECD in the ultraviolet region was used as a diagnostic tool to characterize the studied systems and as a contact point between the previously defined structures of the guanine derivative assemblies and the molecular systems studied here. These studies revealed that the VCD technique is a powerful new method for determining the structures of optically active guanosine motifs.

Proposed geometries of the guanosine adducts, the corresponding spectra calculated by the degenerate coupled oscillator method, and experimental vibrational circular dichroism spectra

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gellert M, Lipsett MN, Davies DR (1962) Proc Natl Acad Sci USA 48:2013–2018

    Article  CAS  Google Scholar 

  2. Davis JT, Spada GP (2007) Chem Soc Rev 36:296–313

    Article  CAS  Google Scholar 

  3. Gottarelli G, Spada GP (2004) Chem Rec 4:39–49

    Article  CAS  Google Scholar 

  4. Spada GP, Gottarelli G (2004) Synlett 596–602

  5. Davis JT (2004) Angew Chem Int Ed 43:668–698

    Article  CAS  Google Scholar 

  6. Wong A, Ida R, Spindler L, Wu G (2005) J Am Chem Soc 127:6990–6998

    Article  CAS  Google Scholar 

  7. Gottarelli G, Lena S, Masiero S, Pieraccini S, Spada GP (2008) Chirality 20:471–485

    Article  CAS  Google Scholar 

  8. Urbanova M (2010) Chirality 21:E215–E230

    Article  Google Scholar 

  9. Setnicka V, Novy J, Bohm S, Sreenivasachary N, Urbanova M, Volka K (2008) Langmuir 24:7520–7527

    Article  CAS  Google Scholar 

  10. Nafie LA (2011) Vibrational optical activity. Wiley, Chichester

  11. Andrushchenko V, Tsankov D, Wieser H (2003) J Mol Struc 661:541–560

    Article  Google Scholar 

  12. Novy J, Bohm S, Kralova J, Kral V, Urbanova M (2008) Biopolymers 89:144–152

    Article  CAS  Google Scholar 

  13. Setnicka V, Urbanova M, Volka K, Nampally S, Lehn JM (2006) Chem Eur J 12:8735–8743

    Google Scholar 

  14. Urbanova M, Setnicka V, Devlin FJ, Stephens PJ (2005) J Am Chem Soc 127:6700–6711

    Article  CAS  Google Scholar 

  15. Bouhoutsos-Brown E, Marshall CL, Pinnavaia TJ (1982) J Am Chem Soc 104:6576–6584

    Article  CAS  Google Scholar 

  16. Urbanova M, Setnicka V, Kral V, Volka K (2001) Biopolymers 60:307–316

    Article  CAS  Google Scholar 

  17. Fucaloro AF, Forster LS (1971) J Am Chem Soc 93:6443–6448

    Article  CAS  Google Scholar 

  18. Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP (2010) Org Biomol Chem 8:2683–2692

    Article  CAS  Google Scholar 

  19. Eimer W, Dorfmueller T (1992) J Phys Chem 96:6790–6800

    Article  CAS  Google Scholar 

  20. Gottarelli G, Masiero S, Mezzina E, Pieraccini S, Rabe JP, Samori P, Spada GP (2000) Chem Eur J 6:3242–3248

    Google Scholar 

  21. Pieraccini S, Masiero S, Pandoli O, Samori P, Spada GP (2006) Org Lett 8:3125–3128

    Article  CAS  Google Scholar 

  22. Gottarelli G, Proni G, Spada GP (1996) Enantiomer 1:201–209

    CAS  Google Scholar 

  23. Jurga-Nowak H, Banachowicz E, Dobek A, Patkowski A (2004) J Phys Chem B 108:2744–2750

    Article  CAS  Google Scholar 

  24. Pinnavaia TJ, Marshall CL, Mettler CM, Fisk CL, Miles HT, Becker ED (1978) J Am Chem Soc 100:3625–3627

    Article  CAS  Google Scholar 

  25. Bonazzi S, Capobianco M, Demorais MM, Garbesi A, Gottarelli G, Mariani P, Bossi MGP, Spada GP, Tondelli L (1991) J Am Chem Soc 113:5809–5816

    Article  CAS  Google Scholar 

  26. Gray DM, Wen JD, Gray CW, Repges R, Repges C, Raabe G, Fleischhauer J (2008) Chirality 20:431–440

    Article  CAS  Google Scholar 

  27. Lena S, Masiero S, Pieraccini S, Spada GP (2009) Chem Eur J 15:7792–7806

    Google Scholar 

  28. Howard FB, Frazier J, Miles HT (1977) Biopolymers 16:791–809

    Article  CAS  Google Scholar 

  29. Petrovic AG, Polavarapu PL (2008) J Phys Chem B 112:2245–2254

    Article  CAS  Google Scholar 

  30. Lena S, Cremonini MA, Federiconi F, Gottarelli G, Graziano C, Laghi L, Mariani P, Masiero S, Pieraccini S, Spada GP (2007) Chem Eur J 13:3441–3449

    Google Scholar 

  31. Lena S, Brancolini G, Gottarelli G, Mariani P, Masiero S, Venturini A, Palermo V, Pandoli O, Pieraccini S, Samori P, Spada GP (2007) Chem Eur J 13:3757–3764

    Google Scholar 

  32. Giorgi T, Lena S, Mariani P, Cremonini MA, Masiero S, Pieraccini S, Rabe JP, Samori P, Spada GP, Gottarelli G (2003) J Am Chem Soc 125:14741–14749

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by research grant P208/11/0105 from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Urbanová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.54 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharova, I., Novotná, J. & Urbanová, M. Stacked and continuous helical self-assemblies of guanosine monophosphates detected by vibrational circular dichroism. Anal Bioanal Chem 403, 2635–2644 (2012). https://doi.org/10.1007/s00216-012-6014-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6014-7

Keywords

Navigation