Skip to main content
Log in

Simultaneous monitoring of seven phenolic metabolites of endocrine disrupting compounds (EDC) in human urine using gas chromatography with tandem mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A gas chromatographic-tandem mass spectrometric (GC-MS/MS) method for the simultaneous determination of the three well-known endocrine disruptors, bisphenol A, daidzein and genistein, as well as of four human pesticide metabolites which are supposed to have proper endocrine activity or which are metabolites of endocrine-disrupting compounds, viz., 1- and 2-naphthol, 2-isopropoxyphenol and 3,5,6-trichloropyridinol, has been developed and validated. The method involves enzymatic cleavage of the conjugates using β-glucuronidase/arylsulfatase followed by solid-phase extraction and derivatisation with N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide. Isotopically labelled internal standards were used for all analytes, to achieve best analytical error correction. The method proved to be both sensitive and reliable in human urine with detection limits ranging from 0.1 to 0.6 μg/L for all analytes. Precision and repeatability was determined to range from 1 to 15 %. Compared with other published analytical procedures, the present method enables the simultaneous determination of a couple of phenolic agents with competitive or improved analytical reliability. Thus, the present method is suitable for a combined monitoring of the exposure to prominent xenobiotics with effects on the human endocrine system (bisphenol A, carbaryl, chlorpyrifos, chlorpyrifos-methyl, naphthalene, propoxur, triclopyr) and phytoestrogens (daidzein, genistein) in population studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hu JY, Aizawa T (2003) Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals. Water Res 37(6):1213–1222

    Article  CAS  Google Scholar 

  2. National Toxicology Programme, Center for the Evaluation of Risks to Human Reproduction, U.S. Department of Health and Human Services Food and Drug Administration F (2008) Monograph on the potential human reproductive and developmental effect of bisphenol A. NIH Publication No. 08-5994

  3. European Food Safety Authority, EFSA Panel (2007) Opinion of the Scientific Panel on food additives, flavourings, processing aids and materials in contact with food (AFC) related to 2,2-bis(4-hydroxyphenyl)propane (bisphenol A). EFSA J 428:1–75. doi:10.2903/j.efsa.2007.428

    Google Scholar 

  4. Kortenkamp A (2007) Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect 115:98–105. doi:10.1289/ehp.9357

    Article  Google Scholar 

  5. Dekant W, Völkel W (2008) Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicol Appl Pharmacol 228(1):114–134

    Article  CAS  Google Scholar 

  6. Völkel W, Kiranoglu M, Fromme H (2008) Determination of free and total bisphenol A in human urine to assess daily uptake as a basis for a valid risk assessment. Toxicol Lett 179(3):155–162. doi:10.1016/j.toxlet.2008.05.002

    Article  Google Scholar 

  7. Ejaz S, Akram W, Lim CW, Lee JJ, Hussain I (2004) Endocrine disrupting pesticides: a leading cause of cancer among rural people in Pakistan. Exp Oncol 26(2):98–105

    CAS  Google Scholar 

  8. Gore AC (2001) Environmental toxicant effects on neuroendocrine function. Endocrine 14(2):235–246

    Article  CAS  Google Scholar 

  9. Racke KD (1993) Environmental fate of chlorpyrifos. Rev Environ Contam Toxicol 131:1

    Article  CAS  Google Scholar 

  10. Nolan R, Rick D, Freshour N, Saunders J (1984) Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol 73(1):8–15

    Article  CAS  Google Scholar 

  11. Carmichael N, Nolan R, Perkins J, Davies R, Warrington S (1989) Oral and dermal pharmacokinetics of triclopyr in human volunteers. Hum Exp Toxicol 8(6):431

    Article  CAS  Google Scholar 

  12. Hardt J, Angerer J (1999) Gas chromatographic method with mass-selective detection for the determination of 2-isopropoxyphenol in human urine. J Chromatogr B 723(1–2):139–145

    CAS  Google Scholar 

  13. Leenheers LH, van Breugel DC, Ravensberg JC, Meuling WJA, Jongen MJM (1992) Determination of 2-isopropoxyphenol in urine by capillary gas chromatography and mass-selective detection. J Chromatogr B 578(2):189–194. doi:10.1016/0378-4347(92)80415-m

    Article  CAS  Google Scholar 

  14. Krechniak J, Foss W (1979) Determination of propoxur and 2-isopropoxyphenol in blood, urine and tissues. Bull Environ Contam Toxicol 23(1):531–535. doi:10.1007/bf01769999

    Article  CAS  Google Scholar 

  15. Klotz DM, Arnold SF, McLachlan JA (1997) Inhibition of 17 beta-estradiol and progesterone activity in human breast and endometrial cancer cells by carbamate insecticides. Life Sci 60(17):1467–1475. doi:10.1016/s0024-3205(97)00098-2

    Article  CAS  Google Scholar 

  16. Meeker JD, Barr DB, Serdar B, Rappaport SM, Hauser R (2006) Utility of urinary 1-naphthol and 2-naphthol levels to assess environmental carbaryl and naphthalene exposure in an epidemiology study. J Expo Sci Environ Epidemiol 17(4):314–320

    Article  Google Scholar 

  17. Sun H, Shen OX, Xu XL, Song L, Wang XR (2008) Carbaryl, 1-naphthol and 2-naphthol inhibit the beta-1 thyroid hormone receptor-mediated transcription in vitro. Toxicology 249(2–3):238–242. doi:10.1016/j.tox.2008.05.008

    Article  CAS  Google Scholar 

  18. Meeker JD, Ryan L, Barr DB, Herrick RF, Bennett DH, Bravo R, Hauser R (2004) The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality. Environ Health Perspect 112(17):1665–1670. doi:10.1289/ehp.7234

    Article  CAS  Google Scholar 

  19. Clarke DB, Lloyd AS, Botting NP, Oldfield MF, Needs PW, Wiseman H (2002) Measurement of intact sulfate and glucuronide phytoestrogen conjugates in human urine using isotope dilution liquid chromatography-tandem mass spectrometry with [13C3] isoflavone internal standards. Anal Biochem 309(1):158–172

    Article  CAS  Google Scholar 

  20. Taku K, Umegaki K, Ishimi Y, Watanabe S (2008) Effects of extracted soy isoflavones alone on blood total and LDL cholesterol: meta-analysis of randomized controlled trials. Ther Clin Risk Manag 4(5):1097–1103

    CAS  Google Scholar 

  21. Siow RCM, Mann GE (2010) Dietary isoflavones and vascular protection: activation of cellular antioxidant defenses by SERMs or hormesis? Mol Aspects Med 31(6):468–477

    Article  CAS  Google Scholar 

  22. Taku K, Melby MK, Nishi N, Omori T, Kurzer MS (2011) Soy isoflavones for osteoporosis: an evidence-based approach. Maturitas 70(4):333–338. doi:10.1016/j.maturitas.2011.09.001

    Article  CAS  Google Scholar 

  23. Fraser LR, Beyret E, Milligan SR, Adeoya-Osiguwa SA (2006) Effects of estrogenic xenobiotics on human and mouse spermatozoa. Hum Reprod 21(5):1184–1193. doi:10.1093/humrep/dei486

    Article  CAS  Google Scholar 

  24. Chavarro JE, Toth TL, Sadio SM, Hauser R (2008) Soy food and isoflavone intake in relation to semen quality parameters among men from an infertility clinic. Hum Reprod 23(11):2584–2590. doi:10.1093/humrep/den243

    Article  CAS  Google Scholar 

  25. Mitchell JH, Cawood E, Kinniburgh D, Provan A, Collins AR, Irvine DS (2001) Effect of a phytoestrogen food supplement on reproductive health in normal males. Clin Sci 100(6):613–618

    Article  CAS  Google Scholar 

  26. Song G, Kochman L, Andolina E, Herko RC, Brewer KJ, Lewis V (2006) Beneficial effects of dietary intake of plant phytoestrogens on semen parameters and sperm DNA integrity in infertile men. Fertil Steril 86(3):S49

    Article  Google Scholar 

  27. Messina M (2011) Evidence does not support the conclusion that soy is an endocrine disruptor. J Pediatr Endocrinol Metab 24(9–10):859–860

    Google Scholar 

  28. Bar-El Dadon S, Reifen R (2010) Soy as an endocrine disruptor: cause for caution? J Pediatr Endocrinol Metab 23(9):855–861

    Article  CAS  Google Scholar 

  29. Andres S, Abraham K, Appel KE, Lampen A (2011) Risks and benefits of dietary isoflavones for cancer. Crit Rev Toxicol 41(6):463–506

    Article  CAS  Google Scholar 

  30. Gray L, Wilson VS, Stoker T, Lambright C, Furr J, Noriega N, Howdeshell K, Ankley GT, Guillette L (2006) Adverse effects of environmental antiandrogens and androgens on reproductive development in mammals1. Int J Androl 29(1):96–104. doi:10.1111/j.1365-2605.2005.00636.x

    Article  CAS  Google Scholar 

  31. Kortenkamp A (2008) Low dose mixture effects of endocrine disrupters: implications for risk assessment and epidemiology. Int J Androl 31(2):233–240. doi:10.1111/j.1365-2605.2007.00862.x

    Article  CAS  Google Scholar 

  32. DIN 32645 (2008) Chemical analysis—decision limit, detection limit and determination limit under repeatability conditions—terms, methods, evaluation. Beuth, Berlin

    Google Scholar 

  33. Bartels MJ, Kastl PE (1992) Analysis of 3,5,6-trichloropyridinol in human urine using negative-ion chemical ionization gas chromatography–mass spectrometry. J Chromatogr B Biomed Sci Appl 575(1):69–74. doi:10.1016/0378-4347(92)80505-k

    Article  CAS  Google Scholar 

  34. Xu J, Wu L, Chen W, Chang AC (2008) Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography–mass spectrometry. J Chromatogr A 1202(2):189–195

    Article  CAS  Google Scholar 

  35. Moors S, Blaszkewicz M, Bolt HM, Degen GH (2007) Simultaneous determination of daidzein, equol, genistein and bisphenol A in human urine by a fast and simple method using SPE and GC-MS. Mol Nutr Food Res 51(7):787–798

    Article  CAS  Google Scholar 

  36. Bravo R, Caltabiano LM, Fernandez C, Smith KD, Gallegos M, Whitehead RD Jr, Weerasekera G, Restrepo P, Bishop AM, Perez JJ, Needham LL, Barr DB (2005) Quantification of phenolic metabolites of environmental chemicals in human urine using gas chromatography–tandem mass spectrometry and isotope dilution quantification. J Chromatogr B 820(2):229–236. doi:10.1016/j.jchromb.2005.03.012

    Article  CAS  Google Scholar 

  37. Krauss D, Mainx HG, Tauscher B, Bischof P (1985) Fragmentation of trimethylsilyl derivatives of 2-alkoxyphenols: a further violation of the ‘even-electron rule’. Org Mass Spectrom 20(10):614–618. doi:10.1002/oms.1210201005

    Article  CAS  Google Scholar 

  38. Koch HM, Kolossa-Gehring M, Schröter-Kermani C, Angerer J, Brüning T (2012) Bisphenol A in 24 h urine and plasma samples of the German Environmental Specimen Bank from 1995 to 2009: a retrospective exposure evaluation. J Expo Sci Environ Epidemiol 22:610–616. doi:10.1038/jes.2012.39

    Article  CAS  Google Scholar 

  39. Koch HM, Angerer J (2001) Analysis of 3,5,6-trichloro-2-pyridinol in urine samples from the general population using gas chromatography–mass spectrometry after steam distillation and solid-phase extraction. J Chromatogr B Biomed Sci Appl 759(1):43–49. doi:10.1016/s0378-4347(01)00209-2

    Article  CAS  Google Scholar 

  40. Ye X, Kuklenyik Z, Needham LL, Calafat AM (2005) Automated on-line column-switching HPLC-MS/MS method with peak focusing for the determination of nine environmental phenols in urine. Anal Chem 77(16):5407–5413

    Article  CAS  Google Scholar 

  41. Arakawa C, Fujimaki K, Yoshinaga J, Imai H, Serizawa S, Shiraishi H (2004) Daily urinary excretion of bisphenol A. Environ Health Prev Med 9(1):22–26

    Article  CAS  Google Scholar 

  42. Grace PB, Taylor JI, Botting NP, Fryatt T, Oldfield MF, Bingham SA (2003) Quantification of isoflavones and lignans in urine using gas chromatography/mass spectrometry. Anal Biochem 315(1):114–121

    Article  CAS  Google Scholar 

  43. Campo L, Rossella F, Fustinoni S (2008) Development of a gas chromatography/mass spectrometry method to quantify several urinary monohydroxy metabolites of polycyclic aromatic hydrocarbons in occupationally exposed subjects. J Chromatogr B 875(2):531–540

    Article  CAS  Google Scholar 

  44. Yoshida T, Yoshida J (2012) Simultaneous analytical method for urinary metabolites of organophosphorus compounds and moth repellents in general population. J Chromatogr B 880:66–73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Göen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 578 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, L., Müller, J. & Göen, T. Simultaneous monitoring of seven phenolic metabolites of endocrine disrupting compounds (EDC) in human urine using gas chromatography with tandem mass spectrometry. Anal Bioanal Chem 405, 2019–2029 (2013). https://doi.org/10.1007/s00216-012-6618-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6618-y

Keywords

Navigation