Skip to main content
Log in

Application of reversed-phase high-performance liquid chromatography with fluorimetric detection for simultaneous assessment of global DNA and total RNA methylation in Lepidium sativum: effect of plant exposure to Cd(II) and Se(IV)

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the present work, application of the previously established reversed-phase liquid chromatography procedure based on fluorescent labeling of cytosine and methylcytosine moieties with 2-bromoacetophenone (HPLC-FLD) is presented for simultaneous evaluation of global DNA and total RNA methylation at cytosine carbon 5. The need for such analysis was comprehended from the recent advances in the field of epigenetics that highlight the importance of non-coding RNAs in DNA methylation and suggest that RNA methylation might play a similar role in the modulation of genetic information, as previously demonstrated for DNA. In order to adopt HPLC-FLD procedure for DNA and RNA methylation analysis in a single biomass extract, two extraction procedures with different selectivity toward nucleic acids were examined, and a simplified calibration was designed allowing for evaluation of methylation percentage based on the ratio of chromatographic peak areas: cytidine/5-methylcytidine for RNA and 2´-deoxycytidine/5-methyl-2′-deoxycytidine for DNA. As a proof of concept, global DNA and total RNA methylation were determined in Lepidium sativum hydroponically grown in the presence of different Cd(II) or Se(IV) concentrations, expecting that plant exposure to abiotic stress might affect not only global DNA but also total RNA methylation. The results obtained showed the increase of DNA methylation in the treated plants up to concentration levels 2 mg L−1 Cd and 1 mg L−1 Se in the growth medium. For higher stressors’ concentration, global DNA methylation tended to decrease. Most importantly, an inverse correlation was found between DNA and RNA methylation levels (r = −0.6788, p = 0.031), calling for further studies of this particular modification of nucleic acids in epigenetic context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Delcuve GP, Rastegar M, Davie JR (2009) J Cell Physiol 219:243–250

    Article  CAS  Google Scholar 

  2. Su Z, Han L, Zhao Z (2011) Epigenetics 6:134–140

    Article  CAS  Google Scholar 

  3. Martin-Subero JI (2011) Pediatr Endocrinol Rev 9(Suppl 1):506–510

    Google Scholar 

  4. Salnikow K, Zhitkovich A (2008) Chem Res Toxicol 21:28–44

    Article  Google Scholar 

  5. Maldonado Santoyo M, Rodriguez Flores C, Lopez Torres A, Wrobel K, Wrobel K (2011) Environ Pollut 159:2387–2392

    Article  Google Scholar 

  6. Rozhon W, Baubec T, Mayerhofer J, Mittelsten Scheid O, Jonak C (2008) Anal Biochem 375:354–360

    Article  CAS  Google Scholar 

  7. Wright RO, Schwartz J, Wright RJ, Bollati V, Tarantini L, Park SK, Hu H, Sparrow D, Vokonas P, Baccarelli A (2010) Environ Health Perspect 118:790–795

    Article  CAS  Google Scholar 

  8. Guerrero-Preston R, Baeza A, Blanco A, Berdasco M, Fraga M, Esteller M (2009) P R Health Sci J 28:24–29

    CAS  Google Scholar 

  9. Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Vendeix FA, Fabris D, Agris PF (2011) Nucl Acids Res 39:D195–D201

    Article  Google Scholar 

  10. Motorin Y, Lyko F, Helm M (2010) Nucl Acids Res 38:1415–1430

    Article  CAS  Google Scholar 

  11. Krauss V, Reuter G (2011) Prog Mol Biol Transl Sci 101:177–191

    Article  CAS  Google Scholar 

  12. Chinnusamy V, Zhu JK (2009) Sci China C Life Sci 52:331–343

    Article  CAS  Google Scholar 

  13. Wang B, Li Y, Shao C, Tan Y, Cai L (2012) Curr Med Chem 19:2611–2620

    Article  CAS  Google Scholar 

  14. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF (2009) BioEssays 31:51–59

    Article  CAS  Google Scholar 

  15. Becker M, Muller S, Nellen W, Jurkowski TP, Jeltsch A, Ehrenhofer-Murray AE (2012) Nucl Acids Res DOI: 10.1093/nar/gks956

  16. Squires JE, Hardip RP, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T (2012) Nucl Acids Res doi: 10.1093/nar/gks144

  17. Schaefer M, Pollex T, Hanna K, Lyko F (2009) Nucl Acids Res 37:e12/11–e12/10

    Article  Google Scholar 

  18. Lopez Torres A, Yanez Barrientos E, Wrobel K, Wrobel K (2011) Anal Chem 83:7999–8005

    Article  CAS  Google Scholar 

  19. Alcazar Magana A, Wrobel K, Alvarado Caudillo Y, Zaina S, Lund G, Wrobel K (2008) Anal Biochem 374:378–385

    Article  Google Scholar 

  20. Greco M, Chiappetta A, Bruno L, Bitonti MB (2012) J Exp Bot 63:695–709

    Article  CAS  Google Scholar 

  21. Czuba M, Kraszewski A (1994) Ecotoxicol Environ Safe 29:330–348

    Article  CAS  Google Scholar 

  22. Frias J, Gulewicz P, Martinez-Villaluenga C, Penas E, Piskula MK, Kozlowska H, Ciska E, Gulewicz K, Vidal-Valverde C (2010) J Agric Food Chem 58:2331–2336

    Article  CAS  Google Scholar 

  23. Yanez Barrientos E, Rodriguez Flores C, Wrobel K, Wrobel K (2012) J Mex Chem Soc 56:1–7

    Google Scholar 

  24. Pedrero Z, Madrid Y, Hartikainen H, Camara C (2008) J Agric Food Chem 56:266–271

    Article  CAS  Google Scholar 

  25. Torres Elguera JC, Yanez Barrientos E, Wrobel K, Wrobel K (2012) Acta Physiol Plant DOI: 10.1007/s11738-11012-11086-11738

  26. Aljanabi SM, Martinez I (1997) Nucl Acids Res 25:4692–4693

    Article  CAS  Google Scholar 

  27. Mitra SE (2003) Sample preparation techniques in analytical chemistry. Wiley, Hoboken

    Book  Google Scholar 

  28. Rangel-Salazar R, Wickström-Lindholm M, Aguilar-Salinas CA, Alvarado Caudillo Y, Dossing KBV, Esteller M, Labourier E, Lund G, Nielsen FC, Rodriguez Rios D, Solis Martinez MO, Wrobel K, Wrobel K, Zaina S (2011) BMC Genomics 12:582–593

    Article  CAS  Google Scholar 

  29. Carpinteyro-Espin P, Jacinto-Ruiz S, Caballero-Vazquez P, Alvarado Caudillo Y, Lund G, Rodríguez-Rios D, Martinez-García JA, Wrobel K, Wrobel K, Zaina S (2011) Epigenetics 6:333–343

    Article  CAS  Google Scholar 

  30. Wrobel K, Landero Figueroa JA, Zaina S, Lund G, Wrobel K (2010) J Chromatogr B 878:609–614

    Article  CAS  Google Scholar 

  31. Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Physiol Plant 121:472–480

    Article  CAS  Google Scholar 

  32. Schaefer M, Hagemann S, Hanna K, Lyko F (2009) Cancer Res 69:8127–8132

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from National Council of Science and Technology, Mexico (CONACYT), project 178553, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Wrobel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 298 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanez Barrientos, E., Wrobel, K., Lopez Torres, A. et al. Application of reversed-phase high-performance liquid chromatography with fluorimetric detection for simultaneous assessment of global DNA and total RNA methylation in Lepidium sativum: effect of plant exposure to Cd(II) and Se(IV). Anal Bioanal Chem 405, 2397–2404 (2013). https://doi.org/10.1007/s00216-013-6703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-6703-x

Keywords

Navigation