Skip to main content
Log in

Determination of lewisite constituents in aqueous samples using hollow-fibre liquid-phase microextraction followed by gas chromatography-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The applicability of hollow-fibre liquid-phase microextraction for extracting 2-chlorovinyldichloroarsine (lewisite 1), bis(2-chlorovinyl)chloroarsine (lewisite 2), tris(2-chlorovinyl)arsine (lewisite 3) and arsenic trichloride from aqueous samples is reported. Parameters affecting the extraction efficiency of these chemicals were optimised. These parameters included the type of derivatising agent, extraction solvent, derivatisation method, pH, ionic strength, stirring speed and extraction time. A linear range between 0.002 and 0.2 μg/mL was established for the lewisites with good square regression coefficients (0.9955–0.9992). Good reproducibility with relative standard deviations (RSDs) from 8 to 10 % was achieved. The limit of detection was 0.002 μg/mL for the lewisites and 0.005 μg/mL for arsenic trichloride (3:1 signal-to-noise ratio). The extraction method was validated with a proficiency test sample issued by the Organisation for the Prohibition of Chemical Weapons (OPCW). The rapidity and precision of the new method should help deter against the employment of lewisite as a chemical warfare agent: its use could be confirmed easily from analysis of aqueous samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. OPCW (1997) Convention on the prohibition of the development, production, stockpiling and use of chemical weapons and on their destruction (Chemical Weapons Convention). Organisation for the Prohibition of Chemical Weapons (OPCW), The Hague

  2. Palit M, Mallard G (2011) J Chromatogr A 1218:5393–5400

    Article  CAS  Google Scholar 

  3. Tompkins BA, Sega GA (2001) J Chromatogr A 911:85–96

    Article  Google Scholar 

  4. Arthur CL, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  5. Szostek B, Aldstadt JH (1998) J Chromatogr A 807:253–263

    Article  CAS  Google Scholar 

  6. Tomkins BA, Sega GA, Ho CH (2001) J Chromatogr A 909:13–28

    Article  CAS  Google Scholar 

  7. Palit M, Pardasani D, Gupta AK, Dubey DK (2005) Anal Chem 77:711–717

    Article  CAS  Google Scholar 

  8. Park YG, Kim SK, Choi K, Son BH, Park JS, Kang HK (2009) Bull Korean Chem Soc 30:49–52

    Article  CAS  Google Scholar 

  9. Park YK, Chung WY, Kim B, Kye YS, Shin MS, Kim D (2013) Chromatographia 76:679–685

    Article  CAS  Google Scholar 

  10. Psillakis E, Kalogerakis N (2003) Trends Anal Chem 22:565–574

    Article  CAS  Google Scholar 

  11. Sarsfraz-Yazdi A, Amiri A (2010) Trends Anal Chem 29:1–14

    Article  Google Scholar 

  12. Bello-López MÁ, Ramos-Payán M, Ocaña-González JA, Fernáadez-Torres R, Callejón-Mouchón M (2012) Anal Lett 45:804–830

    Article  Google Scholar 

  13. Dubey DK, Pardasani D, Gupta AK, Palit M, Kanaujia PK, Tak V (2006) J Chromatogr A 1107:29–35

    Article  CAS  Google Scholar 

  14. Nancy Lee HS, Basheer C, Lee HK (2006) J Chromatogr A 1124:91–96

    Article  Google Scholar 

  15. Lee HS, Sng MT, Basheer C, Lee HK (2008) J Chromatogr A 1196–1197:125–132

    Article  Google Scholar 

  16. Black RM, Muir B (2003) J Chromatogr A 1000:253–281

    Article  CAS  Google Scholar 

  17. Muir B, Slater BJ, Cooper DB, Timperley CM (2004) J Chromatogr A 1028:313–320

    Article  CAS  Google Scholar 

  18. Muir B, Quick S, Slater BJ, Cooper DB, Moran MC, Timperley CM, Carrick WA, Burnell CK (2005) J Chromatogr A 1068:315–326

    Article  CAS  Google Scholar 

  19. Terzic O (2010) J Chromatogr A 1217:4987–4995

    Article  CAS  Google Scholar 

  20. Terzic O, Swahn I, Cretu G, Palit M, Mallard G (2012) J Chromatogr A 1225:182–192

    Article  CAS  Google Scholar 

  21. Terzic O, Bartenbach S, de Voogt P (2013) J Chromatogr A 1304:34–41

    Article  CAS  Google Scholar 

  22. Wooten JV, Ashley DL, Calafat AM (2002) J Chromatogr A 772:147–153

    CAS  Google Scholar 

  23. Fowler WK, Stewart DC, Weinberg DS (1991) J Chromatogr A 558:235–246

    Article  CAS  Google Scholar 

  24. Sokolowski MS, Konopski L (2007) Phosphorus Sulfur Silicon Relat Elem 182:2311–2327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from the Organic Synthesis Group of DSO National Laboratories is gratefully acknowledged. This work was funded by the Future Systems and Technology Directorate, Singapore. F.B.H., J.R. and C.M.T. thank Professor Vernon Gibson FRS, Chief Scientific Advisor to the UK Ministry of Defence, for his continued interest in the development of improved analytical techniques for CWAs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Cheh.

Additional information

Published in the topical collection Analysis of Chemicals Relevant to the Chemical Weapons Convention with guest editors Marc-Michael Blum and R. V. S. Murty Mamidanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheh, M.Y., Chua, H.C., Hopkins, F.B. et al. Determination of lewisite constituents in aqueous samples using hollow-fibre liquid-phase microextraction followed by gas chromatography-mass spectrometry. Anal Bioanal Chem 406, 5103–5110 (2014). https://doi.org/10.1007/s00216-014-7751-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-7751-6

Keywords

Navigation