Skip to main content
Log in

Approaches for the detection of harmful algal blooms using oligonucleotide interactions

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Blooms of microscopic algae in our waterways are becoming an increasingly important environmental concern. Many are sources of harmful biotoxins that can lead to death in humans, marine life and birds. Additionally, their biomass can cause damage to ecosystems such as oxygen depletion, displacement of species and habitat alteration. Globally, the number and frequency of harmful algal blooms has increased over the last few decades, and monitoring and detection strategies have become essential for managing these events. This review discusses developments in the use of oligonucleotide-based ‘molecular probes’ for the selective monitoring of algal cell numbers. Specifically, hybridisation techniques will be a focus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anderson DM (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manage 52(7):342–347

    Google Scholar 

  2. Sellner KG, Doucette GJ, Kirkpatrick GJ (2003) Harmful algal blooms: causes, impacts and detection. J Ind Microbiol Biot 30(7):383–406

    CAS  Google Scholar 

  3. Quilliam MA (2003) The role of chromatography in the hunt for red tide toxins. J Chromatogr A 1000(1–2):527–548

    CAS  Google Scholar 

  4. Christian B, Luckas B (2008) Determination of marine biotoxins relevant for regulations: from the mouse bioassay to coupled LC-MS methods. Anal Bioanal Chem 391(1):117–134

    CAS  Google Scholar 

  5. Gago-Martínez A, Rodríguez-Vázquez JA (2000) Marine toxins: chromatography. encyclopedia of separation science. Academic, Oxford

    Google Scholar 

  6. Okamoto K, Fleming LE (2005) Algae. In: Philip W (ed) Encyclopedia of toxicology (Second Edition). Elsevier, New York, pp 68–76

    Google Scholar 

  7. Masó M, Garcés E (2006) Harmful microalgae blooms (HAB); problematic and conditions that induce them. Mar Pollut Bull 53(10–12):620–630

    Google Scholar 

  8. Heisler J, Glibert PM, Burkholder JM, Anderson DM, Cochlan W, Dennison WC, Dortch Q, Gobler CJ, Heil CA, Humphries E, Lewitus A, Magnien R, Marshall HG, Sellner K, Stockwell DA, Stoecker DK, Suddleson M (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13

    CAS  Google Scholar 

  9. Glibert PM, Burkholder JM (2006) The complex relationships between increases in fertilization of the earth, coastal eutrophication and proliferation of harmful algal blooms. In: Granéli E, Turner J (eds) Ecology of harmful algae, vol 189. Ecological studies. Springer, Berlin, pp 341–354

    Google Scholar 

  10. Adam A, Mohammad-Noor N, Anton A, Saleh E, Saad S, Muhd Shaleh SR (2011) Temporal and spatial distribution of harmful algal bloom (HAB) species in coastal waters of Kota Kinabalu, Sabah, Malaysia. Harmful Algae 10(5):495–502

    Google Scholar 

  11. Shen L, Xu H, Guo X (2012) Satellite remote sensing of Harmful Algal Blooms (HABs) and a potential synthesized framework. Sensors 12(6):7778–7803

    Google Scholar 

  12. Frolov S, Kudela RM, Bellingham JG (2013) Monitoring of harmful algal blooms in the era of diminishing resources: a case study of the U.S. West Coast. Harmful Algae 21–22:1–12

    Google Scholar 

  13. Pierce RH, Kirkpatrick GJ (2001) Innovative techniques for harmful algal toxin analysis. Environ Toxicol Chem 20(1):107–114

    CAS  Google Scholar 

  14. MacKenzie L, Beuzenberg V, Holland P, McNabb P, Selwood A (2004) Solid phase adsorption toxin tracking (SPATT): a new monitoring tool that simulates the biotoxin contamination of filter feeding bivalves. Toxicon 44(8):901–918

    CAS  Google Scholar 

  15. Andersen RA (2005) Algal culturing techniques. Academic, United States

    Google Scholar 

  16. Anderson DM, Anderson P, Bricelj MV, Cullen JJ, Rensel JJE (2001) Monitoring and management strategies for harmful algal blooms in coastal waters. Singapore and Intergovernmental Oceanographic Comission, Paris

    Google Scholar 

  17. Blondeau-Patissier D, Gower JFR, Dekker AG, Phinn SR, Brando VE (2014) A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog Oceanogr 123:123–144

    Google Scholar 

  18. Moisan TA, Sathyendranath S, Bouman HA (2012) Ocean color remote sensing of phytoplankton functional types. Remote sensing of biomass–principles and applications Intech, Rijeka, pp 101–122

    Google Scholar 

  19. Gerssen A, Mulder PPJ, McElhinney MA, de Boer J (2009) Liquid chromatography-tandem mass spectrometry method for the detection of marine lipophilic toxins under alkaline conditions. J Chromatogr A 1216(9):1421–1430

    CAS  Google Scholar 

  20. These A, Scholz J, Preiss-Weigert A (2009) Sensitive method for the determination of lipophilic marine biotoxins in extracts of mussels and processed shellfish by high-performance liquid chromatography-tandem mass spectrometry based on enrichment by solid-phase extraction. J Chromatogr A 1216(21):4529–4538

    CAS  Google Scholar 

  21. These A, Klemm C, Nausch I, Uhlig S (2011) Results of a European interlaboratory method validation study for the quantitative determination of lipophilic marine biotoxins in raw and cooked shellfish based on high-performance liquid chromatography-tandem mass spectrometry. Part I: collaborative study. Anal Bioanal Chem 399(3):1245–1256

    CAS  Google Scholar 

  22. Gago-Martinez A, Comesana-Losada M, Leao-Martins JM, Rodriguez-Vazquez JA (1996) Study on DSP and PSP toxic profile in Haliotis tuberculata. Ciencia (Maracaibo) 4(4):335–342

    CAS  Google Scholar 

  23. Garcia C, Pruzzo M, Rodriguez-Unda N, Contreras C, Lagos N (2010) First evidence of Okadaic acid acyl-derivative and dinophysistoxin-3 in mussel samples collected in Chiloe Island, Southern Chile. J Toxicol Sci 35(3):335–344

    CAS  Google Scholar 

  24. Louppis AP, Badeka AV, Katikou P, Paleologos EK, Kontominas MG (2010) Determination of okadaic acid, dinophysistoxin-1 and related esters in Greek mussels using HPLC with fluorometric detection, LC-MS/MS and mouse bioassay. Toxicon 55(4):724–733

    CAS  Google Scholar 

  25. Prassopoulou E, Katikou P, Georgantelis D, Kyritsakis A (2009) Detection of okadaic acid and related esters in mussels during diarrhetic shellfish poisoning (DSP) episodes in Greece using the mouse bioassay, the PP2A inhibition assay and HPLC with fluorimetric detection. Toxicon 53(2):214–227

    CAS  Google Scholar 

  26. Galluzzi L, Penna A, Bertozzini E, Vila M, Garcés E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate). Appl Environ Microbiol 70(2):1199–1206

    CAS  Google Scholar 

  27. Fux E, Marcaillou C, Mondeguer F, Bire R, Hess P (2008) Field and mesocosm trials on passive sampling for the study of adsorption and desorption behavior of lipophilic toxins with a focus on OA and DTX1. Harmful Algae 7(5):574–583

    CAS  Google Scholar 

  28. Turrell E, Stobo L, Lacaze JP, Bresnan E, Gowland D (2007) Development of an ‘early warning system’ for harmful algal blooms using solid-phase adsorption toxin tracking (SPATT). In: OCEANS 2007 - Europe, 18–21 June. pp 1–6. doi:10.1109/oceanse.2007.4302436

  29. Rundberget T, Gustad E, Samdal IA, Sandvik M, Miles CO (2009) A convenient and cost-effective method for monitoring marine algal toxins with passive samplers. Toxicon 53(5):543–550

    CAS  Google Scholar 

  30. Scholin CA, Buck KR, Britschgi T, Cangelosi G, Chavez FP (1996) Identification of Pseudo-nitzschia australis (Bacillariophyceae) using rRNA-targeted probes in whole cell and sandwich hybridization formats. Phycologia 35(3):190–197

    Google Scholar 

  31. Ayers K, Rhodes LL, Tyrrell J, Gladstone M, Scholin C (2005) International accreditation of sandwich hybridisation assay format DNA probes for microalgae. N Z J Mar Freshw Res 39(6):1225–1231

    CAS  Google Scholar 

  32. Scholin CA, Villac MC, Buck KR, Krupp JM, Powers DA, Fryxell GA, Chavez FP (1994) Ribosomal DNA sequences discriminate among toxic and non-toxic Pseudo-nitzschia species. Nat Toxins 2(4):152–165

    CAS  Google Scholar 

  33. Scholin CA, Herzog M, Sogin M, Anderson DM (1994) Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol 30(6):999–1011

    CAS  Google Scholar 

  34. Miller PE, Scholin CA (1996) Identification of cultured Pseudo-nitzschia (Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes. J Phycol 32(4):646–655

    CAS  Google Scholar 

  35. Tyrrell JV, Bergquist PR, Bergquist PL, Scholin CA (2001) Detection and enumeration of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) using rRNA-targeted oligonucleotide probes. Phycologia 40(5):457–467

    Google Scholar 

  36. Price CM (1993) Fluorescence in situ hybridization. Blood Rev 7(2):127–134

    CAS  Google Scholar 

  37. Liehr T (2009) Fluorescence in situ hybridization (FISH): application guide. Fluorescence in Situ Hybridization (FISH): application guide. Springer Berlin Heidelberg, Berlin

  38. Anderson D (1995) Identification of harmful algal species using molecular probes: an emerging perspective. Lavoisier:3–13

  39. Chen GF, Wang GC, Zhang CY, Zhang BY, Wang XK, Zhou BC (2008) Development of rRNA and rDNA-targeted probes for fluorescence in situ hybridization to detect Heterosigma akashiwo (Raphidophyceae). J Exp Mar Biol Ecol 355(1):66–75

    CAS  Google Scholar 

  40. Scholin CA, Miller PE, Buck KR, Chavez FP, Harris P, Haydock P, Howard J, Cangelosi G (1997) Detection and quantification of Pseudo-nitzschia australis in cultured and natural populations using LSU rRNA-targeted probes. Limnol Oceanogr 42(5):1265–1272

    CAS  Google Scholar 

  41. Miller PE, Scholin CA (1998) Identification and enumeration of cultured and wild Pseudo-nitzschis (bacillariophyceae) using species-specific LSU rRNA-targetted fluorescent probes and filter-based whole cell hybridization. J Phycol 34(2):371–382

    CAS  Google Scholar 

  42. Scholin CA, Marin R, Miller PE, Doucette GJ, Powell CL, Haydock P, Howard J, Ray J (1999) DNA probes and a Receptor-Binding Assay for detection of Pseudo-nitzschia (Bacillariophyceae) species and domoic acid activity in Cultured and Natural Samples. J Phycol 35(6):1356–1367

    CAS  Google Scholar 

  43. Miller PE, Scholin CA (2000) On detection of Pseudo-nitzschia (bacillariophyceae) species using whole cell hybridization: sample fixation and stability. J Phycol 36(1):238–250

    Google Scholar 

  44. Sako Y, Hosoi-Tanabe S, Uchida A (2004) Fluorescence in situ hybridization using rRNA-targeted probes for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella. J Phycol 40(3):598–605

    CAS  Google Scholar 

  45. Hosoi-Tanabe S, Sako Y (2005) Rapid detection of natural cells of Alexandrium tamarense and A. catenella (Dinophyceae) by fluorescence in situ hybridization. Harmful Algae 4(2):319–328

    Google Scholar 

  46. Mikulski CM, Morton SL, Doucette GJ (2005) Development and application of LSU rRNA probes for Karenia brevis in the Gulf of Mexico, USA. Harmful Algae 4(1):49–60

    CAS  Google Scholar 

  47. Hosoi-Tanabe S, Sako Y (2006) Development and application of fluorescence in situ hybridization (FISH) method for simple and rapid identification of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella in cultured and natural seawater. Fish Sci 72(1):77–82

    CAS  Google Scholar 

  48. Mikulski CM, Park YT, Jones KL, Lee CK, Lim WA, Lee Y, Scholin CA, Doucette GJ (2008) Development and field application of rRNA-targeted probes for the detection of Cochlodinium polykrikoides Margalef in Korean coastal waters using whole cell and sandwich hybridization formats. Harmful Algae 7(3):347–359

    CAS  Google Scholar 

  49. Shibata A, Goto Y, Saito H, Kikuchi T, Toda T, Taguchi S (2006) Comparison of SYBR Green I and SYBR Gold stains for enumerating bacteria and viruses by epifluorescence microscopy. Aquat Microb Ecol 43(3):223–231

    Google Scholar 

  50. Cai Q, Li R, Zhen Y, Mi T, Yu Z (2006) Detection of two Prorocentrum species using sandwich hybridization integrated with nuclease protection assay. Harmful Algae 5(3):300–309

    CAS  Google Scholar 

  51. Metfies K, Huljic S, Lange M, Medlin LK (2005) Electrochemical detection of the toxic dinoflagellate Alexandrium ostenfeldii with a DNA-biosensor. Biosens Bioelectron 20(7):1349–1357

    CAS  Google Scholar 

  52. Tyrrell JV, Connell LB, Scholin CA (2002) Monitoring for Heterosigma akashiwo using a sandwich hybridization assay. Harmful Algae 1(2):205–214

    CAS  Google Scholar 

  53. O’Halloran C, Silver MW, Holman TR, Scholin CA (2006) Heterosigma akashiwo in central California waters. Harmful Algae 5(2):124–132

    Google Scholar 

  54. Diercks S, Medlin LK, Metfies K (2008) Colorimetric detection of the toxic dinoflagellate Alexandrium minutum using sandwich hybridization in a microtiter plate assay. Harmful Algae 7(2):137–145

    CAS  Google Scholar 

  55. Zhen Y, Mi T, Yu Z (2008) Detection of Phaeocystis globosa using sandwich hybridization integrated with nuclease protection assay (NPA-SH). J Environ Sci 20(12):1481–1486

    CAS  Google Scholar 

  56. Zhen Y, Mi T, Yu Z (2011) Quantification methods for Alexandrium catenella, a toxic dinoflagellate: comparison of competitive enzyme-linked immunosorbent assay and sandwich hybridization integrated with a nuclease protection assay. Harmful Algae 10(6):589–597

    Google Scholar 

  57. Ahn S, Kulis DM, Erdner DL, Anderson DM, Walt DR (2006) Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species. Appl Environ Microbiol 72(9):5742–5749

    CAS  Google Scholar 

  58. Anderson DM, Kulis D, Erdner D, Ahn S, Walt D (2006) Fibre optic microarrays for the detection and enumeration of harmful algal bloom species. Afr J Mar Sci 28(2):231–235

    Google Scholar 

  59. Zhu X, Zhen Y, Mi T, Yu Z (2012) Detection of Prorocentrum minimum (Pavillard) Schiller with an electrochemiluminescence–molecular probe assay. Mar Biotechnol 14(4):502–511

    CAS  Google Scholar 

  60. Popels LC, Cary SC, Hutchins DA, Forbes R, Pustizzi F, Gobler CJ, Coyne KJ (2003) The use of quantitative polymerase chain reaction for the detection and enumeration of the harmful alga Aureococcus anophagefferens in environmental samples along the United States East Coast. Limnol Oceanogr-Meth 1:92–102

    Google Scholar 

  61. Antonella P, Luca G (2013) The quantitative real-time PCR applications in the monitoring of marine harmful algal bloom (HAB) species. Environ Sci Pollut Res 20(10):6851–6862

    CAS  Google Scholar 

  62. Hosoi-Tanabe S, Sako Y (2005) Species-specific detection and quantification of toxic marine dinoflagellates Alexandrium tamarense and A. catenella by real-time PCR assay. Mar Biotechnol 7(5):506–514

    CAS  Google Scholar 

  63. Kamikawa R, Nagai S, Hosoi-Tanabe S, Itakura S, Yamaguchi M, Uchida Y, Baba T, Sako Y (2007) Application of real-time PCR assay for detection and quantification of Alexandrium tamarense and Alexandrium catenella cysts from marine sediments. Harmful Algae 6(3):413–420

    CAS  Google Scholar 

  64. Galluzzi L, Bertozzini E, Penna A, Perini F, Garcés E, Magnani M (2010) Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods. J Appl Phycol 22(1):1–9

    CAS  Google Scholar 

  65. Garneau M-È, Schnetzer A, Countway PD, Jones AC, Seubert EL, Caron DA (2011) Examination of the seasonal dynamics of the toxic dinoflagellate Alexandrium catenella at Redondo Beach, California, by quantitative PCR. Appl Environ Microbiol 77(21):7669–7680

    CAS  Google Scholar 

  66. Murray SA, Wiese M, Stüken A, Brett S, Kellmann R, Hallegraeff G, Neilan BA (2011) sxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters. Appl Environ Microbiol 77(19):7050–7057

    CAS  Google Scholar 

  67. Touzet N, Keady E, Raine R, Maher M (2009) Evaluation of taxa-specific real-time PCR, whole-cell FISH and morphotaxonomy analyses for the detection and quantification of the toxic microalgae Alexandrium minutum (Dinophyceae), Global Clade ribotype. FEMS Microbiol Ecol 67(2):329–341

    CAS  Google Scholar 

  68. Erdner DL, Percy L, Keafer B, Lewis J, Anderson DM (2010) A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments. Deep-Sea Res Pt II 57(3–4):279–287

    CAS  Google Scholar 

  69. Dyhrman ST, Erdner D, Du JL, Galac M, Anderson DM (2006) Molecular quantification of toxic Alexandrium fundyense in the Gulf of Maine using real-time PCR. Harmful Algae 5(3):242–250

    CAS  Google Scholar 

  70. Kamikawa R, Hosoi-Tanabe S, Nagai S, Itakura S, Sako Y (2005) Development of a quantification assay for the cysts of the toxic dinoflagellate Alexandrium tamarense using real-time polymerase chain reaction. Fish Sci 71(5):987–991

    CAS  Google Scholar 

  71. Kavanagh S, Brennan C, O’Connor L, Moran S, Salas R, Lyons J, Silke J, Maher M (2010) Real-time PCR detection of Dinophysis species in Irish coastal waters. Mar Biotechnol 12(5):534–542

    CAS  Google Scholar 

  72. Fitzpatrick E, Caron DA, Schnetzer A (2010) Development and environmental application of a genus-specific quantitative PCR approach for Pseudo-nitzschia species. Mar Biol 157(5):1161–1169

    CAS  Google Scholar 

  73. Andree KB, Fernández-Tejedor M, Elandaloussi LM, Quijano-Scheggia S, Sampedro N, Garcés E, Camp J, Diogène J (2011) Quantitative PCR coupled with melt curve analysis for detection of selected Pseudo-nitzschia spp. (Bacillariophyceae) from the northwestern Mediterranean Sea. Appl Environ Microbiol 77(5):1651–1659

    CAS  Google Scholar 

  74. Delaney JA, Ulrich RM, Paul JH (2011) Detection of the toxic marine diatom Pseudo-nitzschia multiseries using the RuBisCO small subunit (rbcS) gene in two real-time RNA amplification formats. Harmful Algae 11:54–64

    CAS  Google Scholar 

  75. Kamikawa R, Asai J, Miyahara T, Murata K, Oyama K, Yoshimatsu S, Yoshida T, Sako Y (2006) Application of a real-time pcr assay to a comprehensive method of monitoring harmful algae. Microbes Environ 21(3):163–173

    Google Scholar 

  76. Bowers HA, Trice TM, Magnien RE, Goshorn DM, Michael B, Schaefer EF, Rublee PA, Oldach DW (2006) Detection of Pfiesteria spp. by PCR in surface sediments collected from Chesapeake Bay tributaries (Maryland). Harmful Algae 5(4):342–351

    CAS  Google Scholar 

  77. Handy SM, Hutchins DA, Cary S, Coyne KJ (2006) Simultaneous enumeration of multiple raphidophyte species by quantitative real-time PCR: capabilities and limitations. Limnol Oceanogr-Meth 4:193–204

    Google Scholar 

  78. Galluzzi L, Bertozzini E, Penna A, Perini F, Pigalarga A, Graneli E, Magnani M (2008) Detection and quantification of Prymnesium parvum (Haptophyceae) by real-time PCR. Lett Appl Microbiol 46(2):261–266

    CAS  Google Scholar 

  79. Zamor RM, Glenn KL, Hambright KD (2012) Incorporating molecular tools into routine HAB monitoring programs: using qPCR to track invasive Prymnesium. Harmful Algae 15:1–7

    CAS  Google Scholar 

  80. Manning SR, La Claire JW II (2010) Multiplex PCR methods for the species-specific detection and quantification of Prymnesium parvum (Haptophyta). J Appl Phycol 22(5):587–597

    Google Scholar 

  81. Martins A, Vasconcelos V (2011) Use of qPCR for the study of hepatotoxic cyanobacteria population dynamics. Arch Microbiol 193(9):615–627

    CAS  Google Scholar 

  82. Park BS, Wang P, Kim JH, Kim J-H, Gobler CJ, Han M-S (2014) Resolving the intra-specific succession within Cochlodinium polykrikoides populations in southern Korean coastal waters via use of quantitative PCR assays. Harmful Algae 37:133–141

    CAS  Google Scholar 

  83. Smith KF, de Salas M, Adamson J, Rhodes LL (2014) Rapid and accurate identification by real-time pcr of biotoxin-producing dinoflagellates from the family gymnodiniaceae. Mar Drugs 12(3):1361–1376

    CAS  Google Scholar 

  84. Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67(1):6–20

    CAS  Google Scholar 

  85. Yung TK, Chan KA, Mok TS, Tong J, To K-F, Lo YD (2009) Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non–small cell lung cancer patients. Clin Cancer Res 15(6):2076–2084

    CAS  Google Scholar 

  86. Compton J (1991) Nucleic acid sequence-based amplification. Nature 350(6313):91–92

    CAS  Google Scholar 

  87. Casper ET, Paul JH, Smith MC, Gray M (2004) Detection and quantification of the red tide dinoflagellate Karenia brevis by real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 70(8):4727–4732

    CAS  Google Scholar 

  88. Patterson SS, Casper ET, Garcia-Rubio L, Smith MC, Paul JH (2005) Increased precision of microbial RNA quantification using NASBA with an internal control. J Microbiol Methods 60(3):343–352

    CAS  Google Scholar 

  89. Smith MC, Steimle G, Ivanov S, Holly M, Fries DP (2007) An integrated portable hand-held analyser for real-time isothermal nucleic acid amplification. Anal Chim Acta 598(2):286–294

    CAS  Google Scholar 

  90. Ulrich RM, Casper ET, Campbell L, Richardson B, Heil CA, Paul JH (2010) Detection and quantification of Karenia mikimotoi using real-time nucleic acid sequence-based amplification with internal control RNA (IC-NASBA). Harmful Algae 9(1):116–122

    CAS  Google Scholar 

  91. Zhang F, Ma L, Xu Z, Zheng J, Shi Y, Lu Y, Miao Y (2009) Sensitive and rapid detection of Karenia mikimotoi (Dinophyceae) by loop-mediated isothermal amplification. Harmful Algae 8(6):839–842

    Google Scholar 

  92. Mori Y, Notomi T (2009) Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15(2):62–69

    CAS  Google Scholar 

  93. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):e63

    CAS  Google Scholar 

  94. Parida M, Sannarangaiah S, Dash PK, Rao PVL, Morita K (2008) Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 18(6):407–421

    CAS  Google Scholar 

  95. Wang L, Li L, Alam MJ, Geng Y, Li Z, Yamasaki S, Shi L (2008) Loop-mediated isothermal amplification method for rapid detection of the toxic dinoflagellate Alexandrium, which causes algal blooms and poisoning of shellfish. FEMS Microbiol Lett 282(1):15–21

    CAS  Google Scholar 

  96. Nagai S, Itakura S (2012) Specific detection of the toxic dinoflagellates Alexandrium tamarense and Alexandrium catenella from single vegetative cells by a loop-mediated isothermal amplification method. Mar Genomics 7:43–49

    Google Scholar 

  97. Nagai S, Yamamoto K, Hata N, Itakura S (2012) Study of DNA extraction methods for use in loop-mediated isothermal amplification detection of single resting cysts in the toxic dinoflagellates Alexandrium tamarense and A. catenella. Mar Genomics 7:51–56

    Google Scholar 

  98. Miyazono A, Nagai S, Kudo I, Tanizawa K (2012) Viability of Alexandrium tamarense cysts in the sediment of Funka Bay, Hokkaido, Japan: Over a hundred year survival times for cysts. Harmful Algae 16:81–88

    Google Scholar 

  99. Zhang F, Shi Y, Jiang K, Song W, Ma C, Xu Z, Ma L (2014) Rapid detection and quantification of Prorocentrum minimum by loop-mediated isothermal amplification and real-time fluorescence quantitative PCR. J Appl Phycol 26(3):1379–1388

    CAS  Google Scholar 

  100. Chen G, Ma C, Zhang C, Zhou J, Wang Y, Wang G, Zhang B, Xu Z, Lu DD (2013) A rapid and sensitive method for field detection of Prorocentrum donghaiense using reverse transcription-coupled loop-mediated isothermal amplification. Harmful Algae 29:31–39

    CAS  Google Scholar 

  101. Casper ET, Patterson SS, Bhanushali P, Farmer A, Smith M, Fries DP, Paul JH (2007) A handheld NASBA analyzer for the field detection and quantification of Karenia brevis. Harmful Algae 6(1):112–118

    CAS  Google Scholar 

  102. Nielsen PE (1998) Peptide nucleic acids. Sci & Med 5(5):48–55

  103. Nielsen PE (2001) Peptide nucleic acid: a versatile tool in genetic diagnostics and molecular biology. Curr Opin Biotechnol 12(1):16–20

    CAS  Google Scholar 

  104. Singh SK, Koshkin AA, Wengel J, Nielsen P (1998) LNA (locked nucleic acids): synthesis and high-affinity nucleic acid recognition. Chem Commun 4:455–456

    Google Scholar 

  105. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8(1):1–7

    CAS  Google Scholar 

  106. Connell L, Ray J, Litaker W, Tester P (2006) Enhanced detection levels in a semi-automated sandwich hybridisation assay using a peptide nucleic acid (PNA) signal probe. Afr J Mar Sci 28(2):237–239

    Google Scholar 

  107. Huang B, Hou J, Lin S, Chen J, Hong H (2008) Development of a PNA probe for the detection of the toxic dinoflagellate Takayama pulchella. Harmful Algae 7(4):495–503

    CAS  Google Scholar 

  108. Chen G, Zhang C, Zhang B, Wang G, Lu D, Xu Z, Yan P (2011) Development of a PNA Probe for Fluorescence In Situ Hybridization Detection of Prorocentrum donghaiense. PLoS One 6(10):1–8

    Google Scholar 

  109. Duy J, Smith RL, Collins SD, Connell LB (2014) A field-deployable colorimetric bioassay for the rapid and specific detection of ribosomal RNA. Biosens Bioelectron 52:433–437

    CAS  Google Scholar 

  110. Diercks S, Gescher C, Metfies K, Medlin L (2009) Evaluation of locked nucleic acids for signal enhancement of oligonucleotide probes for microalgae immobilised on solid surfaces. J Appl Phycol 21(6):657–668

    CAS  Google Scholar 

  111. Diaz MR, Jacobson JW, Goodwin KD, Dunbar SA, Fell JW (2010) Molecular detection of harmful algal blooms (HABs) using locked nucleic acids and bead array technology. Limnol Oceanogr-Meth 8:269

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire E. Lenehan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruce, K.L., Leterme, S.C., Ellis, A.V. et al. Approaches for the detection of harmful algal blooms using oligonucleotide interactions. Anal Bioanal Chem 407, 95–116 (2015). https://doi.org/10.1007/s00216-014-8193-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8193-x

Keywords

Navigation