Skip to main content
Log in

Bioavailability and biotransformation of sulforaphane and erucin metabolites in different biological matrices determined by LC–MS–MS

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The food-related isothiocyanate sulforaphane (SFN), a hydrolysis product of the secondary plant metabolite glucoraphanin, has been revealed to have cancer-preventive activity in experimental animals. However, these studies have often provided inconsistent results with regard to bioavailability, bioaccessibility, and outcome. This might be because the endogenous biotransformation of SFN metabolites to the structurally related erucin (ERN) metabolites has often not been taken into account. In this work, a fully validated liquid chromatography tandem mass spectrometry (LC–MS–MS) method was developed for the simultaneous determination of SFN and ERN metabolites in a variety of biological matrices. To reveal the importance of the biotransformation pathway, matrices including plasma, urine, liver, and kidney samples from mice and cell lysates derived from colon-cancer cell lines were included in this study. The LC–MS–MS method provides limits of detection from 1 nmol L−1 to 25 nmol L−1 and a mean recovery of 99 %. The intra and interday imprecision values are in the range 1–10 % and 2–13 %, respectively. Using LC–MS–MS, SFN and ERN metabolites were quantified in different matrices. The assay was successfully used to determine the biotransformation in all biological samples mentioned above. For a comprehensive analysis and evaluation of the potential health effects of SFN, it is necessary to consider all metabolites, including those formed by biotransformation of SFN to ERN and vice versa. Therefore, a sensitive and robust LC–MS–MS method was validated for the simultaneous quantification of mercapturic-acid-pathway metabolites of SFN and ERN.

Biotransformation of sulforaphane and erucin metabolites in mice and cell culture

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACN:

Acetonitrile

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ERN:

Erucin

ERN–Cys:

ERN–cysteine

ERN–GSH:

ERN–glutathione

ERN–NAC:

ERN–N-acetylcysteine

ESI:

Electrospray ionization

FA:

Formic acid

GSH:

Glutathione

HPLC:

High-performance liquid chromatography

LC–MS–MS:

Liquid chromatography–tandem mass spectrometry

LOQ:

Limit of quantification

MeOH:

Methanol

NMR:

Nuclear magnetic resonance

R 2 :

Coefficient of determination

SFN:

Sulforaphane

SFN–Cys:

SFN–cysteine

SFN–CysGly:

SFN–cysteinylglycine

SFN–NAC:

SFN–N-acetylcysteine

SPE:

Solid-phase extraction

TFA:

Trifluoroacetic acid

References

  1. Higdon JV, Delage B, Williams DJ, Dashwood RH (2007) Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharm Res 55:224–236

    Article  CAS  Google Scholar 

  2. Traka M, Mithen R (2009) Glucosinolates, isothiocyanates and human health. Phytochem Rev 8:269–282

    Article  CAS  Google Scholar 

  3. Juge N, Mithen RF, Traka M (2007) Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci 64:1105–1127

    Article  CAS  Google Scholar 

  4. Sestili P, Paolillo M, Lenzi M, Colombo E, Vallorani L, Casadei L, Martinelli C, Fimognari C (2010) Sulforaphane induces DNA single strand breaks in cultured human cells. Mutat Res 689:65–73

    Article  CAS  Google Scholar 

  5. Sekine-Suzuki E, Yu D, Kubota N, Okayasu R, Anzai K (2008) Sulforaphane induces DNA double strand breaks predominantly repaired by homologous recombination pathway in human cancer cells. Biochem Biophys Res Commun 377:341–345

    Article  CAS  Google Scholar 

  6. Piberger AL, Köberle B, Hartwig A (2014) The broccoli-born isothiocyanate sulforaphane impairs nucleotide excision repair: XPA as one potential target. Arch Toxicol 88:647–658

    CAS  Google Scholar 

  7. Sarikamis G, Marquez J, Maccormack R, Bennett RN, Roberts J, Mithen R (2006) High glucosinolate broccoli: a delivery system for sulforaphane. Mol Breeding 8:219–228

    Article  Google Scholar 

  8. Hanschen FS, Rohn S, Mewis I, Schreiner M, Kroh LW (2012) Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chem 130:1–8

    Article  CAS  Google Scholar 

  9. Clarke JD, Dashwood RH, Ho E (2008) Multi-targeted prevention of cancer by sulforaphane. Cancer Lett 269:291–304

    Article  CAS  Google Scholar 

  10. Krul C, Humblot C, Philippe C, Vermeulen M, van Nuenen M, Havenaar R, Rabot S (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23:1009–1016

    Article  CAS  Google Scholar 

  11. Luang-In V, Narbad A, Nueno-Palop C, Mithen R, Bennett M, Rossiter JT (2014) The metabolism of methylsulfinylalkyl- and methylthioalkyl-glucosinolates by a selection of human gut bacteria. Mol Nutr Food Res 58:875–883

    Article  CAS  Google Scholar 

  12. Al-Janobi AA, Mithen RF, Gasper AV, Shaw PN, Middleton RJ, Ortori CA, Barrett DA (2006) Quantitative measurement of sulforaphane, iberin and their mercapturic acid pathway metabolites in human plasma and urine using liquid chromatography-tandem electrospray ionisation mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 844:223–234

    Article  CAS  Google Scholar 

  13. Kumar A, Sabbioni G (2010) New biomarkers for monitoring the levels of isothiocyanates in humans. Chem Res Toxicol 23:756–765

    Article  CAS  Google Scholar 

  14. Kassahun K, Davis M, Hu P, Martin B, Baillie T (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10:1228–1233

    Article  CAS  Google Scholar 

  15. Clarke JD, Hsu A, Riedl K, Bella D, Schwartz SJ, Stevens JF, Ho E (2011) Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol Res 64:456–463

    Article  CAS  Google Scholar 

  16. Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA (2012) Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol Nutr Food Res 56:1906–1916

    Article  CAS  Google Scholar 

  17. Verkerk R, Schreiner M, Krumbein A, Ciska E, Holst B, Rowlan I, De Schrijver R, Hansen M, Gerhauser C, Mithen R, Dekker M (2009) Glucosinolates in Brassica vegetables: the influence of the food supply chain on intake, bioavailability and human health. Mol Nutr Food Res 53:219–265

    Article  Google Scholar 

  18. Papi A, Orlandi M, Bartolini G, Barillari J, Iori R, Paolini M, Ferroni F, Fumo MG, Pedulli GF, Valgimigli L (2008) Cytotoxic and antioxidant activity of 4-methylthio-3-butenyl isothiocyanate from Raphanus sativus L. (Kaiware daikon) sprouts. J Agric Food Chem 56:875–883

    Article  CAS  Google Scholar 

  19. Lamy E, Hertrampf A, Herz C, Schuler J, Erlacher M, Bertele D, Bakare A, Wagner M, Weiland T, Lauer U, Drognitz O, Huber R, Rohn S, Giesemann T, Mersch-Sundermann V (2013) Preclinical evaluation of 4-methylthiobutyl isothiocyanate on liver cancer and cancer stem cells with different p53 status. PLoS One. doi:10.1371/journal.pone.0070846

    Google Scholar 

  20. Ganin H, Rayo J, Amara N, Levy N, Krief P, Meijler MM (2013) Sulforaphane and erucin, natural isothiocyanates from broccoli, inhibit bacterial quorum sensing. Med Chem Commun 4:175–179

    Article  CAS  Google Scholar 

  21. Zhang Y, Wade KL, Prestera T, Talalay P (1996) Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Anal Biochem 239:160–167

    Article  CAS  Google Scholar 

  22. Shapiro TA, Fahey JW, Wade KL, Stephenson KK, Talalay P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 10:501–508

    CAS  Google Scholar 

  23. Ye L, Dinkova-Kostova AT, Wade KL, Zhang Y, Shapiro TA, Talalay P (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316:43–353

    Article  CAS  Google Scholar 

  24. Cramer JM, Jeffery EH (2011) Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr Cancer 63:196–201

    Article  CAS  Google Scholar 

  25. Budnowski J, Hanschen FS, Lehmann C, Haack M, Brigelius-Flohe R, Kroh LW, Blaut M, Rohn S, Hanske L (2013) A derivatization method for the simultaneous detection of glucosinolates and isothiocyanates in biological samples. Anal Biochem 441:199–207

    Article  CAS  Google Scholar 

  26. Vermeulen M, van Rooijen HJ, Vaes WH (2003) Analysis of isothiocyanate mercapturic acids in urine: a biomarker for cruciferous vegetable intake. J Agric Food Chem 51:3554–3559

    Article  CAS  Google Scholar 

  27. Gasper AV, Al-Janobi A, Smith JA, Bacon JR, Fortun P, Atherton C, Taylor MA, Hawkey CJ, Barrett DA, Mithen RF (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr 82:1283–1291

    CAS  Google Scholar 

  28. Agrawal S, Winnik B, Buckley B, Mi L, Chung FL, Cook TJ (2006) Simultaneous determination of sulforaphane and its major metabolites from biological matrices with liquid chromatography-tandem mass spectroscopy. J Chromatogr B Anal Technol Biomed Life Sci 840:99–107

    Article  CAS  Google Scholar 

  29. Egner PA, Kensler TW, Chen JG, Gange SJ, Groopman JD, Friesen MD (2008) Quantification of sulforaphane mercapturic acid pathway conjugates in human urine by high-performance liquid chromatography and isotope-dilution tandem mass spectrometry. Chem Res Toxicol 21:1991–1996

    Article  CAS  Google Scholar 

  30. Kensler TW, Chen JG, Egner PA, Fahey JW, Jacobson LP, Stephenson KK, Ye L, Coady JL, Wang JB, Wu Y, Sun Y, Zhang QN, Zhang BC, Zhu YR, Qian GS, Carmella SG, Hecht SS, Benning L, Gange SJ, Groopman JD, Talalay P (2005) Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People's Republic of China. Cancer Epidemiol Biomarkers Prev 14:2605–2613

    Article  CAS  Google Scholar 

  31. Hauder J, Winkler S, Bub A, Rufer CE, Pignitter M, Somoza V (2001) LC-MS/MS quantification of sulforaphane and indole-3-carbinol metabolites in human plasma and urine after dietary intake of selenium-fortified broccoli. J Agric Food Chem 59:8047–8057

    Article  Google Scholar 

  32. Li Y, Zhang T, Li X, Zou P, Schwartz SJ, Sun D (2013) Kinetics of sulforaphane in mice after consumption of sulforaphane-enriched broccoli sprout preparation. Mol Nutr Food Res 57:2128–2136

    Article  CAS  Google Scholar 

  33. Vermeulen M, Zwanenburg B, Chittenden GJ, Verhagen H (2003) Synthesis of isothiocyanate-derived mercapturic acids. Eur J Med Chem 38:729–737

    Article  CAS  Google Scholar 

  34. Guidance for Industry: Bioanalytical Method Validation. U.S. Department of Health and Human Service, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Vetenery Medicine (CVM), May 2001, BP. Available on the internet at http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf

  35. Herz C, Hertrampf A, Zimmermann S, Stetter N, Wagner M, Kleinhans C, Erlacher M, Schüler J, Platz S, Rohn S, Mersch-Sundermann V, Lamy E (2014) The isothiocyanate erucin abrogates telomerase in hepatocellular carcinoma cells in vitro and in an orthotopic xenograft tumour model of HCC. J Cell Mol Med. doi:10.1111/jcmm.12412

    Google Scholar 

  36. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G(2) arrest after DNA damage. Science 282:1497–1501

    Article  CAS  Google Scholar 

  37. Platz S, Kühn C, Schiess S, Schreiner M, Mewis I, Kemper M, Pfeiffer A, Rohn S (2013) Determination of benzyl isothiocyanate metabolites in human plasma and urine by LC-ESI-MS/MS after ingestion of nasturtium (Tropaeolum majus L.). Anal Bioanal Chem 405:7427–7736

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Rohn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platz, S., Piberger, A.L., Budnowski, J. et al. Bioavailability and biotransformation of sulforaphane and erucin metabolites in different biological matrices determined by LC–MS–MS. Anal Bioanal Chem 407, 1819–1829 (2015). https://doi.org/10.1007/s00216-015-8482-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8482-z

Keywords

Navigation