Skip to main content
Log in

Dual element (15N/14N, 13C/12C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

To assess sources and degradation of the herbicide glyphosate [N-(phosphonomethyl) glycine] and its metabolite AMPA (aminomethylphosphonic acid), concentration measurements are often inconclusive and even 13C/12C analysis alone may give limited information. To advance isotope ratio analysis of an additional element, we present compound-specific 15N/14N analysis of glyphosate and AMPA by a two step derivatization in combination with gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The N-H group was derivatized with isopropyl chloroformate (iso-PCF), and remaining acidic groups were subsequently methylated with trimethylsilyldiazomethane (TMSD). Iso-PCF treatment at pH <10 gave too low 15N/14N ratios indicating an incomplete derivatization; in contrast, too high 15N/14N ratios at pH >10 indicated decomposition of the derivative. At pH 10, and with an excess of iso-PCF by 10–24, greatest yields and accurate 15N/14N ratios were obtained (deviation from elemental analyzer-IRMS: −0.2 ± 0.9 % for glyphosate; −0.4 ± 0.7 % for AMPA). Limits for accurate δ15N analysis of glyphosate and AMPA were 150 and 250 ng injected, respectively. A combination of δ15N and δ13C analysis by liquid chromatography/isotope ratio mass spectrometry (LC/IRMS) (1) enabled an improved distinction of commercial glyphosate products and (2) showed that glyphosate isotope values during degradation by MnO2 clearly fell outside the commercial product range. This highlights the potential of combined carbon and nitrogen isotopes analysis to trace sources and degradation of glyphosate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helander M, Saloniemi I, Saikkonen K (2012) Glyphosate in northern ecosystems. Trends Plant Sci 17(10):569–574

    Article  CAS  Google Scholar 

  2. Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64(4):441–456

    Article  CAS  Google Scholar 

  3. Sviridov AV, Shushkova TV, Zelenkova NF, Vinokurova NG, Morgunov IG, Ermakova IT, Leontievsky AA (2012) Distribution of glyphosate and methylphosphonate catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. Appl Microbiol Biotechnol 93(2):787–796

    Article  CAS  Google Scholar 

  4. Ermakova I, Kiseleva N, Shushkova T, Zharikov M, Zharikov G, Leontievsky A (2010) Bioremediation of glyphosate-contaminated soils. Appl Microbiol Biotechnol 88(2):585–594. doi:10.1007/s00253-010-2775-0

    Article  CAS  Google Scholar 

  5. Barrett KA, McBride MB (2005) Oxidative degradation of glyphosate and aminomethylphosphonate by manganese oxide. Environ Sci Technol 39(23):9223–9228. doi:10.1021/es051342d

    Article  CAS  Google Scholar 

  6. Battaglin WA, Meyer MT, Kuivila KM, Dietze JE (2014) Glyphosate and its degradation product AMPA occur frequently and widely in US soils, surface water, groundwater, and precipitation. JAWRA 50(2):275–290. doi:10.1111/jawr.12159

    CAS  Google Scholar 

  7. Landry D, Dousset S, Fournier J-C, Andreux F (2005) Leaching of glyphosate and AMPA under two soil management practices in Burgundy vineyards (Vosne-Romanée, 21-France). Environ Pollut 138(2):191–200. doi:10.1016/j.envpol.2005.04.007

    Article  CAS  Google Scholar 

  8. Struger J, Thompson D, Staznik B, Martin P, McDaniel T, Marvin C (2008) Occurrence of glyphosate in surface waters of southern Ontario. Bull Environ Contam Toxicol 80(4):378–384. doi:10.1007/s00128-008-9373-1

    Article  CAS  Google Scholar 

  9. Jaworska J, Van Genderen-Takken H, Hanstveit A, van de Plassche E, Feijtel T (2002) Environmental risk assessment of phosphonates, used in domestic laundry and cleaning agents in the Netherlands. Chemosphere 47(6):655–665. doi:10.1016/S0045-6535(01)00328-9

    Article  CAS  Google Scholar 

  10. Ghanem A, Bados P, Kerhoas L, Dubroca J, Einhorn J (2007) Glyphosate and AMPA analysis in sewage sludge by LC-ESI-MS/MS after FMOC derivatization on strong anion-exchange resin as solid support. Anal Chem 79(10):3794–3801. doi:10.1021/ac062195k

    Article  CAS  Google Scholar 

  11. Ghanem A, Bados P, Estaun AR, de Alencastro LF, Taibi S, Einhorn J, Mougin C (2007) Concentrations and specific loads of glyphosate, diuron, atrazine, nonylphenol, and metabolites thereof in French urban sewage sludge. Chemosphere 69(9):1368–1373

    Article  CAS  Google Scholar 

  12. Patsias J, Papadopoulou A, Papadopoulou-Mourkidou E (2001) Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization. J Chromatogr A 932(1/2):83–90. doi:10.1016/S0021-9673(01)01253-5

    Article  CAS  Google Scholar 

  13. Bijlsma L, Beltrán E, Boix C, Sancho J, Hernández F (2014) Improvements in analytical methodology for the determination of frequently consumed illicit drugs in urban wastewater. Analy Bioanal Chem 406(17):4261–4272. doi:10.1007/s00216-014-7818-4

    Article  CAS  Google Scholar 

  14. See HH, Hausert PC (2011) Electric field-driven extraction of lipophilic anions across a carrier-mediated polymer inclusion membrane. Anal Chem 83(19):7507–7513. doi:10.1021/ac201772g

    Article  CAS  Google Scholar 

  15. Hanke I, Singer H, Hollender J (2008) Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Anal Bioanal Chem 391(6):2265–2276. doi:10.1007/s00216-008-2134-5

    Article  CAS  Google Scholar 

  16. Kataoka H, Ryu S, Sakiyama N, Makita M (1996) Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection. J Chromatogr A 726(1/2):253–258. doi:10.1016/0021-9673(95)01071-8

    Article  CAS  Google Scholar 

  17. Tseng S-H, Lo Y-W, Chang P-C, Chou S-S, Chang H-M (2004) Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector. J Agric Food Chem 52(13):4057–4063. doi:10.1021/jf049973z

    Article  CAS  Google Scholar 

  18. Lee EA, Zimmerman LR, Bhullar BS, Thurman EM (2002) Linker-assisted immunoassay and liquid chromatography/mass spectrometry for the analysis of glyphosate. Anal Chem 74(19):4937–4943. doi:10.1021/ac020208y

    Article  CAS  Google Scholar 

  19. Petersen J, Grant R, Larsen SE, Blicher-Mathiesen G (2012) Sampling of herbicides in streams during flood events. J Environ Monit 14(12):3284–3294. doi:10.1039/C2EM30771E

    Article  CAS  Google Scholar 

  20. Maillard E, Imfeld G (2014) Pesticide mass budget in a stormwater wetland. Environ Sci Technol. doi:10.1021/es500586x

    Google Scholar 

  21. Braeckevelt M, Fischer A, Kästner M (2012) Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers. Appl Microbiol Biotechnol 94(6):1401–1421. doi:10.1007/s00253-012-4077-1

    Article  CAS  Google Scholar 

  22. Schmidt TC, Jochmann MA (2012) Origin and fate of organic compounds in water: characterization by compound-specific stable isotope analysis. In: Cooks RG, Yeung ES (eds) Annual Review of Analytical Chemistry, vol 5, Vol., pp 133–155. doi:10.1146/annurev-anchem-062011-143143

    Google Scholar 

  23. Weller P, Boner M, Foerstel H, Becker H, Peikert B, Dreher W (2011) Isotopic fingerprinting for the authenticity control of crop protection active compounds using the representative insecticide fipronil. J Agric Food Chem 59(9):4365–4370. doi:10.1021/jf104766e

    Article  CAS  Google Scholar 

  24. NicDaéid N, Meier-Augenstein W, Kemp HF, Sutcliffe OB (2012) Using isotopic fractionation to link precursor to product in the synthesis of (±)-mephedrone: a new tool for combating “legal high” drugs. Anal Chem 84(20):8691–8696. doi:10.1021/ac3019069

    Article  Google Scholar 

  25. Schmidt TC, Zwank L, Elsner M, Berg M, Meckenstock RU, Haderlein SB (2004) Compound-specific stable isotope analysis of organic contaminants in natural environments: a critical review of the state of the art, prospects, and future challenges. Anal Bioanal Chem 378(2):283–300

    Article  CAS  Google Scholar 

  26. Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75(3/4):215–255

    Article  CAS  Google Scholar 

  27. Aeppli C, Bastviken D, Andersson P, Gustafsson Ö (2013) Chlorine isotope effects and composition of naturally produced organochlorines from chloroperoxidases, flavin-dependent halogenases, and in forest soil. Environ Sci Technol 47(13):6864–6871. doi:10.1021/es3037669

    CAS  Google Scholar 

  28. Elsner M (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects, and limitations. J Environ Monit 12(11):2005–2031

    Article  CAS  Google Scholar 

  29. Reinnicke S, Simonsen A, Sørensen SR, Aamand J, Elsner M (2012) C and N isotope fractionation during biodegradation of the pesticide metabolite 2,6-dichlorobenzamide (bam): potential for environmental assessments. Environ Sci Technol 46(3):1447–1454. doi:10.1021/es203660g

    Article  CAS  Google Scholar 

  30. Meyer AH, Elsner M (2012) 13C/12C and 15N/14N isotope analysis to characterize natural degradation of atrazine: evidence from parent and daughter compound values. Environ Sci Technol, submitted

  31. Coupe RH, Kalkhoff SJ, Capel PD, Gregoire C (2012) Fate and transport of glyphosate and aminomethylphosphonic acid in surface waters of agricultural basins. Pest Manag Sci 68(1):16–30. doi:10.1002/ps.2212

    Article  CAS  Google Scholar 

  32. Kjær J, Ernstsen V, Jacobsen OH, Hansen N, de Jonge LW, Olsen P (2011) Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils. Chemosphere 84(4):471–479. doi:10.1016/j.chemosphere.2011.03.029

    Article  Google Scholar 

  33. Kujawinski DM, Wolbert JB, Zhang L, Jochmann MA, Widory D, Baran N, Schmidt TC (2013) Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Anal Bioanal Chem 405(9):2869–2878. doi:10.1007/s00216-012-6669-0

    Article  CAS  Google Scholar 

  34. Hofstetter TB, Berg M (2011) Assessing transformation processes of organic contaminants by compound-specific stable isotope analysis. TrAC Trends Anal Chem 30(4):618–627

    Article  CAS  Google Scholar 

  35. Fischer A, Theuerkorn K, Stelzer N, Gehre M, Thullner M, Richnow HH (2007) Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environ Sci Technol 41(10):3689–3696

    Article  CAS  Google Scholar 

  36. Zwank L, Berg M, Elsner M, Schmidt TC, Schwarzenbach RP, Haderlein SB (2005) New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ Sci Technol 39(4):1018–1029

    Article  CAS  Google Scholar 

  37. Lutz SR, Van Breukelen BM (2014) Combined source apportionment and degradation quantification of organic pollutants with CSIA: 1. Model derivation. Environ Sci Technol 48(11):6220–6228. doi:10.1021/es405400w

    Article  CAS  Google Scholar 

  38. Elsner M, Jochmann MA, Hofstetter TB, Hunkeler D, Bernstein A, Schmidt TC, Schimmelmann A (2012) Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal Bioanal Chem 403(9):2471–2491. doi:10.1007/s00216-011-5683-y

    Article  CAS  Google Scholar 

  39. Reinnicke S, Bernstein A, Elsner M (2010) Small and reproducible isotope effects during methylation with trimethylsulfonium hydroxide (TMSH): a convenient derivatization method for isotope analysis of negatively charged molecules. Anal Chem 82(5):2013–2019. doi:10.1021/ac902750s

    Article  CAS  Google Scholar 

  40. McKenzie RM (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineral Mag 38:493–502

    Article  CAS  Google Scholar 

  41. Marlier JF (2001) Multiple isotope effects on the acyl group transfer reactions of amides and esters. Acc Chem Res 34(4):283–290

    Article  CAS  Google Scholar 

  42. Skarpeli-Liati M, Turgeon A, Garr AN, Arnold WA, Cramer CJ, Hofstetter TB (2011) pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS. Anal Chem 83 5):1641–1648. doi:10.1021/ac102667y

  43. Rishavy MA, Cleland WW (1999) C-13, N-15, and O-18 equilibrium isotope effects and fractionation factors. Can J Chem-Rev Can Chim 77(5/6):967–977

    CAS  Google Scholar 

  44. Diefenbach M, Brönstrup M, Aschi M, Schröder D, Schwarz H (1999) HCN synthesis from methane and ammonia: mechanisms of Pt+-mediated C−N coupling. J Am Chem Soc 121(45):10614–10625. doi:10.1021/ja992642w

    Article  CAS  Google Scholar 

  45. Tian J, Shi H, Li X, Yin Y, Chen L (2012) Coupling mass balance analysis and multi-criteria ranking to assess the commercial-scale synthetic alternatives: a case study on glyphosate. Green Chem 14(7):1990–2000. doi:10.1039/C2GC35349K

    Article  CAS  Google Scholar 

  46. Barja BC, dos Santos Afonso M (1998) An ATR-FTIR study of glyphosate and its fe(III) complex in aqueous solution. Environ Sci Technol 32(21):3331–3335. doi:10.1021/es9800380

    Article  CAS  Google Scholar 

  47. Ramstedt M, Norgren C, Sheals J, Shchukarev A, Sjöberg S (2004) Chemical speciation of N-(phosphonomethyl)glycine in solution and at mineral interfaces. Surface Interface Anal 36(8):1074–1077. doi:10.1002/sia.1844

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Academic Exchange Service (DAAD) by a fellowship scholarship to E.M. and by the German National Science Foundation (DFG) withhin the priority program SPP 1315. The authors thank Martina Höche, Ramona Brejcha, and Harald Lowag for assistance with LC/IRMS and support in characterization of in-house laboratory standards.

Note Added in Proof

After submission of the manuscript, the following additional optimization of our method was accomplished for samples containing a high background (10 gl−1) of glutamate, corresponding to an excess of 2 · 104 of this foreign nitrogen-containing compound. (i) To adjust the pH to 10, 300 μl instead of 50 μl borate buffer were added in order to provide sufficient buffer capacity to counter the effect of glutamate. (ii) To provide also a sufficient excess of derivatization agent, 400 μl of 1.0 M isopropyl chloroformate in hexane were added. (iii) As vortex time, 6 min instead of 2 min, was chosen to allow additional time for glyphosate molecules to partition into the aqueous phase (see ESM Fig. S4). This extra time was found to be necessary to compensate for the slower reaction of glyphosate due to competition by glutamate for partitioning and reaction with the derivatization agent. (iv) In the subsequent second derivatization step, 300 μl instead of 50 μl of 2.0 M trimethyl silyl diazomethane (absolute 600 μmol) were added to provide again a sufficient excess of derivatization agent. (v) To enable, finally, separation of glyphosate- and AMPA-derivatives from the interfering glutamate-derivative, a Rtx-5 amine column (30 m; 0.32 μm inner diameter; 1 μm film thickness, supplied by Restek GmbH, Bad Homburg, Germany), was used with the following temperature program: the initial temperature of 80 °C was held for 1 min, then increased to 150 °C at 10 °C min−1, held again for 1 min, and then ramped to 230 °C at 3 °C min−1. The final temperature was held for 2 min (see GC chromatogram in ESM Fig. S5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Elsner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogusu, E.O., Wolbert, J.B., Kujawinski, D.M. et al. Dual element (15N/14N, 13C/12C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Anal Bioanal Chem 407, 5249–5260 (2015). https://doi.org/10.1007/s00216-015-8721-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8721-3

Keywords

Navigation