Skip to main content
Log in

A selective biomarker for confirming nitrofurazone residues in crab and shrimp using ultra-performance liquid chromatography–tandem mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Reliably detecting nitrofurazone (NFZ) residues in farmed crab and shrimp was previously hindered by lack of appropriately specific analytical methodology. Parent NFZ rapidly breaks down in meat, and the commonly used side-chain metabolite, semicarbazide (SEM), is non-specific as it occurs naturally in crustacean shell often leading to ‘false positive’ detections in meat. Using 5-nitro-2-furaldehyde (NF) as marker metabolite, following pre-column derivatization with 2,4-dinitrophenylhydrazine (DNPH), ultra-performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) analysis in negative electrospray ionization mode enabled confirmation of NFZ residues in deliberately treated whole crab, crab meat and shrimp meat, with a limit of detection (LOD) and limit of quantification (LOQ) below 1 ng g−1. Meanwhile, the derivatives of DNPH-NF were synthesized for the first time, purified by preparative liquid chromatography and structure characterized with nuclear magnetic resonance spectroscopy (1H-NMR). The purity of derivative was checked by ultra-performance liquid chromatography–tunable ultraviolet (UPLC–TUV), and the contents were beyond 99.9 %. For comparison purposes, crustacean samples were analysed using both NF and SEM marker metabolites. NFZ treatment was revealed by both NF and SEM marker metabolites, but untreated crab also showed measurable levels of SEM which could potentially be misinterpreted as evidence of illegal NFZ use.

Confirmation of nitrofurazone residues in crab

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2-NBA:

2-Nitrobenzaldehyde

CE:

Collision energy

DMSO:

Dimethyl sulfoxide

DNPH:

2,4-Dinitrophenylhydrazine

ESI:

Electrospray ionization

1H-NMR:

Proton nuclear magnetic resonance spectroscopy

HPLC:

High-performance liquid chromatography

LOD:

Limit of detection

MRM:

Multiple reaction monitoring

NF:

5-Nitro-2-furaldehyde

NFZ:

Nitrofurazone

SEM:

Semicarbazide

UPLC–MS/MS:

Ultra-performance liquid chromatography–tandem mass spectrometry

UPLC–TUV:

Ultra-performance liquid chromatography–tunable ultraviolet

References

  1. Ito K, Sasaki S, Nir A, Okamiya H, Sakai T (2000) J Toxicol Sci 25:195–201

    Article  CAS  Google Scholar 

  2. Shoda T, Yasuhara K, Moriyasu M, Takahashi T, Uneyma C, Hirose M, Mitsumori K (2001) Archiv Toxicol 75:297–305

    Article  CAS  Google Scholar 

  3. Hirakawa K, Midorikawa K, Oikawa S, Kaawanishi S (2003) Mutat Res 536:90–101

    Article  Google Scholar 

  4. Saari L, Peltonen K (2004) Food Addit Contam 21:825–832

    Article  CAS  Google Scholar 

  5. Cooper KM, Mulder PPJ, Van Rhijn JA, Kovacsics L, McCracken RJ, Young PB, Kennedy DG (2005) Food Addit Contam 22:406–414

    Article  CAS  Google Scholar 

  6. Chu PS, Lopez MI, Abraham A, El Said KR, Plakas SM (2008) J Agric Food Chem 56:8030–8034

    Article  CAS  Google Scholar 

  7. Lopez MI, Feldlaufer MF, Williams AD, Chu PS (2007) J Agric Food Chem 55:1103–1108

    Article  CAS  Google Scholar 

  8. Chu PS, Lopez MI (2005) J Agric Food Chem 53:8934–8939

    Article  CAS  Google Scholar 

  9. Leitner A, Zöllner P, Lindner W (2001) J Chromatogr A 939:49–58

    Article  CAS  Google Scholar 

  10. European Commission, Commission Regulation 470/2009/EC. Off J Eur Communities (2009) L152,11 and (2010) L15,1

  11. European Union, Commission Decision of 13 March 2003 amending Decision 2002/657/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food of animal origin (2003) Off J Eur Un.,s L 71:17–18

  12. Stadler RH, Mottier P, Guy P, Gremaud E, Varga N, Lalljie S, Whitaker R, Kintscher J, Dudler V, Read WA, Castle L (2004) Analyst 129:276–281

    Article  CAS  Google Scholar 

  13. Szilagyi S, de la Calle MB (2006) Eur Food Res Technol 224:141–146

    Article  CAS  Google Scholar 

  14. Pereira AS, Donato JL, De Nucci G (2004) Food Addit Contam 21:63–69

    Article  CAS  Google Scholar 

  15. Hoenicke K, Gatermann R, Hartig L, Mandix M, Otte S (2004) Food Addit Contam 21:526–537

    Article  CAS  Google Scholar 

  16. Bendall JG (2009) Food Addit Contam 26:47–56

    Article  CAS  Google Scholar 

  17. Gatermann R, Hoenicke K, Mandix M (2004) Czech J Food Sci 22:353–354

    Google Scholar 

  18. Crews C (2014) J Apicult Res 53:129–140

    Article  CAS  Google Scholar 

  19. Xing YN, Ni HG, Chen ZY (2012) J Food Prot 75:1654–1659

    Article  CAS  Google Scholar 

  20. Van Poucke C, Detavernier C, Wille M, Kwakman J, Sorgeloos P, Van Peteghem C (2011) J Agric Food Chem 59:2107–2112

    Article  Google Scholar 

  21. McCracken R, Hanna B, Ennis D, Cantley L, Faulkner D, Kennedy DG (2013) Food Chem 136:1562–1567

    Article  CAS  Google Scholar 

  22. Cooper KM, Samsonova JV, Plumpton L, Elliott CT, Kenedy DG (2007) Anal Chim Acta 592:64–71

    Article  CAS  Google Scholar 

  23. Cooper KM, McCracken RJ, Buurman M, Kennedy DG (2008) Food Addit Contam 25:548–556

    Article  CAS  Google Scholar 

  24. Mulder PPJ, Beumer B, Van Rhijn JA (2007) Anal Chim Acta 586:366–373

    Article  CAS  Google Scholar 

  25. Samsonova JVL, Douglas AJ, Cooper KM, Kennedy DG, Elliott CT (2008) Food Chem Toxicol 46:1548–1554

    Article  CAS  Google Scholar 

  26. Wang Y, Jester ELE, El Said KR, Abraham A, Hooe-Rollman J, Plakas SM (2010) J Agric Food Chem 58:313–316

    Article  CAS  Google Scholar 

  27. Bendall JG (2009) J Agric Food Chem 57:11446–11447

    Article  CAS  Google Scholar 

  28. Ritchie AR, Clear MH, Solly SRB (1977) N Z J Sci 20:225–229

    CAS  Google Scholar 

  29. Chmielowski W, Rak L, Ratyni-Sahaj E (1988) Med Weter 44:671–674, Determination of nitrofurazone residues in milk by a gas chromatography, article in Polish

    Google Scholar 

  30. Guidance for Industry—bioanalytical method validation (2001) US Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), Rockville, MD, USA. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070107.pdf (Accessed Sep 2015)

Download references

Acknowledgments

The authors would like to thank the Scientific Research Foundation (SRF, Q1435), Zhejiang Ocean University, Zhejiang Provincial Natural Science Foundation (LQ13C200004) and National Natural Science Foundation of China (No.21407127) for supporting the research.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Guo, Y., Yan, Z. et al. A selective biomarker for confirming nitrofurazone residues in crab and shrimp using ultra-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 407, 8971–8977 (2015). https://doi.org/10.1007/s00216-015-9058-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9058-7

Keywords

Navigation