Skip to main content
Log in

LC-QTOF-MS-based targeted metabolomics of arginine-creatine metabolic pathway-related compounds in plasma: application to identify potential biomarkers in pediatric chronic kidney disease

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chronic kidney disease (CKD) is a major epidemiologic problem which causes several disturbances in adults and in pediatrics. Despite being a worldwide public health problem, information available for CKD in the pediatric population is scarce. For that reason, an ion-pair reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) method has been developed and validated in order to analyze 16 amino acids, amino acid derivatives, and analogous compounds related to the arginine-creatine metabolic pathway that are suspicious of being increased or decreased in plasma from patients with CKD. The analytical method involved the addition of dithiothreitol, a reducing agent which reduces disulfide and thus giving total aminothiol concentration, as well as a simple precipitation of plasma proteins. Moreover, despite amino acids being usually derivatized to improve their retention time and to enhance their signal, for this method, an ion-pairing reagent was used, thus avoiding the need for derivatization. Subsequently, analysis of plasma from pediatric patients suffering from CKD and control pediatrics was carried out. As a result, glycine, citrulline, creatinine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) were significantly increased in patients with CKD, regardless of their creatinine level, whereas in addition to these compounds dimethylglycine was also increased when CKD patients had plasma creatinine concentrations above 12 μg mL−1, thus all are suggested as potential biomarkers for renal impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ (2012) Epidemiology of chronic kidney disease in children. Pediatr Nephrol 27:363–373

    Article  Google Scholar 

  2. Kobayashi T, Yoshida T, Fujisawa T, Matsumura Y, Ozawa T, Yanai H, Iwasawa A, Kamachi T, Fujiwara K, Kohno M, Tanaka N (2014) A metabolomics-based approach for predicting stages of chronic kidney disease. Biochem Biophys Res Commun 445:412–416

    Article  CAS  Google Scholar 

  3. Avner ED, Harmon WE, Niaudet P, Yoshikawa N (2009) Pediatric nephrology, 6th edn. Springer, Berlin

    Book  Google Scholar 

  4. Tonshoff B, Schaefer F, Mehls O (1990) Disturbance of growth hormone–insulin-like growth factor axis in uraemia. Implications for recombinant human growth hormone treatment. Pediatr Nephrol 4:654–662

    Article  CAS  Google Scholar 

  5. Levey AS, Eckardt K-U, Tsukamoto Y, Levin A, Coresh J, Rossert J, De ZD, Hostetter TH, Lameire N, Eknoyan G (2005) Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int 67:2089–2100

    Article  Google Scholar 

  6. Noordzij M, Kramer A, Abad Diez JM, Alonso de la Torre R, Arcos Fuster E, Bikbov BT, Bonthuis M, Bouzas Caamaño E, Čala S, Caskey FJ, Castro de la Nuez P, Cernevskis H, Collart F, Díaz Tejeiro R, Djukanovic L, Ferrer-Alamar M, Finne P, García Bazaga MdlA, Garneata L, Golan E, Gonzalez Fernández R, Heaf JG, Hoitsma A, Ioannidis GA, Kolesnyk M, Kramar R, Lasalle M, Leivestad T, Lopot F, van de Luijtgaarden MWM, Macário F, Magaz Á, Martín Escobar E, de Meester J, Metcalfe W, Ots-Rosenberg M, Palsson R, Piñera C, Pippias M, Prütz KG, Ratkovic M, Resić H, Rodríguez Hernández A, Rutkowski B, Spustová V, Stel VS, Stojceva-Taneva O, Süleymanlar G, Wanner C, Jager KJ (2014) Renal replacement therapy in Europe: a summary of the 2011 ERA–EDTA Registry Annual Report. Clin Kidney J

  7. Chesnaye N, Bonthuis M, Schaefer F, Groothoff JW, Verrina E, Heaf JG, Jankauskiene A, Lukosiene V, Molchanova EA, Mota C, Peco-Antic A, Ratsch I-M, Bjerre A, Roussinov DL, Sukalo A, Topaloglu R, Van HK, Zagozdzon I, Jager KJ, Van SKJ (2014) Demographics of paediatric renal replacement therapy in Europe: a report of the ESPN/ERA-EDTA registry. Pediatr Nephrol 29:2403–2410

    Article  Google Scholar 

  8. Fanos V, Fanni C, Ottonello G, Noto A, Dessi A, Mussap M (2013) Metabolomics in adult and pediatric nephrology. Molecules 18:4644–4857

    Article  CAS  Google Scholar 

  9. Wasung ME, Chawla LS, Madero M (2015) Biomarkers of renal function, which and when? Clin Chim Acta 438:350–357

    Article  CAS  Google Scholar 

  10. Bjornsson TD (1979) Use of serum creatinine concentrations to determine renal function. Clin Pharmacokinet 4:200–222

    Article  CAS  Google Scholar 

  11. Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S (1983) Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med 75:943–950

    Article  CAS  Google Scholar 

  12. Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24:3263–3265

    Article  CAS  Google Scholar 

  13. Jain AK, McLeod I, Huo C, Cuerden MS, Akbari A, Tonelli M, van Walraven C, Quinn RR, Hemmelgarn B, Oliver MJ, Li P, Garg AX (2009) When laboratories report estimated glomerular filtration rates in addition to serum creatinines, nephrology consults increase. Kidney Int 76:318–323

    Article  CAS  Google Scholar 

  14. Zhang M, Fang C, Smagin G (2014) Derivatization for the simultaneous LC/MS quantification of multiple neurotransmitters in extracellular fluid from rat brain microdialysis. J Pharm Biomed Anal 100:357–364

    Article  CAS  Google Scholar 

  15. Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens J-P, Morla A, Bouchu D (2003) ESI-MS/MS analysis of underivatized amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionization mode. Rapid Commun Mass Spectrom 17:1297–1311

    Article  CAS  Google Scholar 

  16. Uutela P, Ketola RA, Piepponen P, Kostiainen R (2009) Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry. Anal Chim Acta 633:223–231

    Article  CAS  Google Scholar 

  17. Mengerink Y, Kutlan D, Toth F, Csampai A, Molnar-Perl I (2002) Advances in the evaluation of the stability and characteristics of the amino acid and amine derivatives obtained with the o-phthaldialdehyde/3-mercaptopropionic acid and o-phthaldialdehyde/N-acetyl-L-cysteine reagents. High-performance liquid chromatography-mass spectrometry study. J Chromatogr A 949:99–124

    Article  CAS  Google Scholar 

  18. van Eijk HMH, Rooyakkers DR, Soeters PB, Deutz NEP (1999) Determination of amino acid isotope enrichment using liquid chromatography-mass spectrometry. Anal Biochem 271:8–17

    Article  Google Scholar 

  19. Gartenmann K, Kochhar S (1999) Short-chain peptide analysis by high-performance liquid chromatography coupled to electrospray ionization mass spectrometer after derivatization with 9-fluorenylmethyl chloroformate. J Agric Food Chem 47:5068–5071

    Article  CAS  Google Scholar 

  20. Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens J-P, Bouchu D (2005) Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom 19:1587–1602

    Article  CAS  Google Scholar 

  21. Qu J, Wang Y, Luo G, Wu Z, Yang C (2002) Validated quantitation of underivatized amino acids in human blood samples by volatile ion-pair reversed-phase liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal Chem 74:2034–2040

    Article  CAS  Google Scholar 

  22. Armstrong M, Jonscher K, Reisdorph NA (2007) Analysis of 25 underivatized amino acids in human plasma using ion-pairing reversed-phase liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21:2717–2726

    Article  CAS  Google Scholar 

  23. Nolin TD, McMenamin ME, Himmelfarb J (2007) Simultaneous determination of total homocysteine, cysteine, cysteinylglycine, and glutathione in human plasma by high-performance liquid chromatography: application to studies of oxidative stress. J Chromatogr B Anal Technol Biomed Life Sci 852:554–561

    Article  CAS  Google Scholar 

  24. Guan X, Hoffman B, Dwivedi C, Matthees DP (2003) A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J Pharm Biomed Anal 31:251–261

    Article  CAS  Google Scholar 

  25. Rossi R, Milzani A, Dalle-Donne I, Giustarini D, Lusini L, Colombo R, Di Simplicio P (2002) Blood glutathione disulfide: in vivo factor or in vitro artifact? Clin Chem 48:742–753

    CAS  Google Scholar 

  26. Tang YB, Teng L, Sun F, Wang XL, Peng L, Cui YY, Hu JJ, Luan X, Zhu L, Chen HZ (2012) Determination of glycine in biofluid by hydrophilic interaction chromatography coupled with tandem mass spectrometry and its application to the quantification of glycine released by embryonal carcinoma stem cells. J Chromatogr B Anal Technol Biomed Life Sci 905:61–66

    Article  CAS  Google Scholar 

  27. Wu SE, Huskey WP, Borchardt RT, Schowen RL (1983) Chiral instability at sulfur of S-adenosylmethionine. Biochemistry 22:2828–2832

    Article  CAS  Google Scholar 

  28. van de Merbel NC (2008) Quantitative determination of endogenous compounds in biological samples using chromatographic techniques. TrAC Trends Anal Chem 27:924–933

    Article  CAS  Google Scholar 

  29. COMMISSION DECISION of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results (2012) Off J Eur Communities

  30. Le A, Ng A, Kwan T, Cusmano-Ozog K, Cowan TM (2014) A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Chromatogr B Anal Technol Biomed Life Sci 944:166–174

    Article  CAS  Google Scholar 

  31. Piraud M, Vianey-Saban C, Bourdin C, Acquaviva-Bourdain C, Boyer S, Elfakir C, Bouchu D (2005) A new reversed-phase liquid chromatographic/tandem mass spectrometric method for analysis of underivatised amino acids: evaluation for the diagnosis and the management of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom 19:3287–3297

    Article  CAS  Google Scholar 

  32. Bald E, Glowacki R, Drzewoski J (2001) Determination by liquid chromatography of free and total cysteine in human urine in the form of its S-quinolinium derivative. J Chromatogr A 913:319–329

    Article  CAS  Google Scholar 

  33. Klepacki J, Brunner N, Schmitz V, Klawitter J, Christians U, Klawitter J (2013) Development and validation of an LC-MS/MS assay for the quantification of the trans-methylation pathway intermediates S-adenosylmethionine and S-adenosylhomocysteine in human plasma. Clin Chim Acta 421:91–97

    Article  CAS  Google Scholar 

  34. Rogalewicz F, Hoppilliard Y, Ohanessian G (2000) Fragmentation mechanisms of α-amino acids protonated under electrospray ionization: a collisional activation and ab initio theoretical study. Int J Mass Spectrom 195(196):565–590

    Article  Google Scholar 

  35. Avila MA, Garcia-Trevijano ER, Lu SC, Corrales FJ, Mato JM (2004) Methylthioadenosine. Int J Biochem Cell Biol 36:2125–2130

    Article  CAS  Google Scholar 

  36. Kusmierek K, Glowacki R, Bald E (2006) Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem 385:855–860

    Article  CAS  Google Scholar 

  37. Refsum H, Helland S, Ueland PM (1985) Radioenzymic determination of homocysteine in plasma and urine. Clin Chem 31:624–628

    CAS  Google Scholar 

  38. Liang X-S, Zhao F-Q, Hao L-X (2013) Research on stability of synthetic folic acid. Adv Mater Res 781–784:1215–1218, 1215 pp

    Article  CAS  Google Scholar 

  39. Zhang W, Li P, Geng Q, Duan Y, Guo M, Cao Y (2014) Simultaneous determination of glutathione, cysteine, homocysteine, and cysteinylglycine in biological fluids by ion-pairing high-performance liquid chromatography coupled with precolumn derivatization. J Agric Food Chem 62:5845–5852

    Article  CAS  Google Scholar 

  40. Balion C, Kapur BM (2011) Folate: clinical utility of serum and red blood cell analysis. Am Assoc Clin Chem 37:8–10

    Google Scholar 

  41. Desiderio C, Cavallaro RA, De Rossi A, D’Anselmi F, Fuso A, Scarpa S (2005) Evaluation of chemical and diastereoisomeric stability of S-adenosylmethionine in aqueous solution by capillary electrophoresis. J Pharm Biomed Anal 38:449–456

    Article  CAS  Google Scholar 

  42. Valerio A, Baldo G, Tessari P (2005) A rapid method to determine plasma homocysteine concentration and enrichment by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 19:561–567

    Article  CAS  Google Scholar 

  43. Hellmuth C, Koletzko B, Peissner W (2011) Aqueous normal phase chromatography improves quantification and qualification of homocysteine, cysteine and methionine by liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci 879:83–89

    Article  CAS  Google Scholar 

  44. Ruseva S, Lozanov V, Markova P, Girchev R, Mitev V (2014) In vivo investigation of homocysteine metabolism to polyamines by high-resolution accurate mass spectrometry and stable isotope labeling. Anal Biochem 457:38–47

    Article  CAS  Google Scholar 

  45. Jacobsen DW (1998) Homocysteine and vitamins in cardiovascular disease. Clin Chem 44:1833–1843

    CAS  Google Scholar 

  46. Squellerio I, Tremoli E, Cavalca V (2011) Quantification of arginine and its metabolites in human erythrocytes using liquid chromatography-tandem mass spectrometry. Anal Biochem 412:108–110

    Article  CAS  Google Scholar 

  47. Wang J-m, Chu Y, Li W, Wang X-y, Guo J-h, L-l Y, Ma X-h, Ma Y-l, Q-h Y, C-x L (2014) Simultaneous determination of creatine phosphate, creatine and 12 nucleotides in rat heart by LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 958:96–101

    Article  CAS  Google Scholar 

  48. Midttun O, Kvalheim G, Ueland PM (2013) High-throughput, low-volume, multianalyte quantification of plasma metabolites related to one-carbon metabolism using HPLC-MS/MS. Anal Bioanal Chem 405:2009–2017

    Article  CAS  Google Scholar 

  49. Servillo L, Giovane A, D’Onofrio N, Casale R, Cautela D, Castaldo D, Balestrieri ML (2013) Determination of homoarginine, arginine, NMMA, ADMA and SDMA in biological samples by HPLC-ESI-mass spectrometry. Int J Mol Sci 14:20131–20138, 20138 pp

    Article  CAS  Google Scholar 

  50. Vanholder R, De SR, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De DPP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63:1934–1943

    Article  CAS  Google Scholar 

  51. Andrade F, Rodriguez-Soriano J, Prieto JA, Elorz J, Aguirre M, Ariceta G, Martin S, Sanjurjo P, Aldamiz-Echevarria L (2008) The arginine-creatine pathway is disturbed in children and adolescents with renal transplants. Pediatr Res 64:218–222

    Article  CAS  Google Scholar 

  52. Sjostrom PA, Odlind BG, Wolgast M (1988) Extensive tubular secretion and reabsorption of creatinine in humans. Scand J Urol Nephrol 22:129–131

    Article  CAS  Google Scholar 

  53. Namnum P, Insogna K, Baggish D, Hayslett JP (1983) Evidence for bidirectional net movement of creatinine in the rat kidney. Am J Physiol 244:F719–F723

    CAS  Google Scholar 

  54. Mihout F, Shweke N, Bige N, Jouanneau C, Dussaule J-C, Ronco P, Chatziantoniou C, Boffa J-J (2011) Asymmetric dimethylarginine (ADMA) induces chronic kidney disease through a mechanism involving collagen and TGF-Β1 synthesis. J Pathol 223:37–45

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the technical and human support provided by Alava Central Service of Analysis belonging to SGIker (UPV/EHU, MINECO, GV/EJ, ERDF, and ESF) as well as the Division of Metabolism belonging to Cruces University Hospital (Barakaldo, Spain) for supplying real samples for this study. This work was funded by the Department of Industry, Innovation, Commerce and Tourism of the Basque Government (SAI12/25 Project) and by the Basque Government, Research Groups of the Basque University System (Project No. IT338-10). The Basque Government is also gratefully acknowledged for a predoctoral PRE_2013_1_899 grant for Sandra Benito (Department of Education, Language Policy and Culture).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón J. Barrio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benito, S., Sánchez, A., Unceta, N. et al. LC-QTOF-MS-based targeted metabolomics of arginine-creatine metabolic pathway-related compounds in plasma: application to identify potential biomarkers in pediatric chronic kidney disease. Anal Bioanal Chem 408, 747–760 (2016). https://doi.org/10.1007/s00216-015-9153-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9153-9

Keywords

Navigation