Skip to main content
Log in

Silver nanoparticle-modified electrode for the determination of nitro compound-containing pesticides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper reports the electroanalytical determination of pendimethalin and ethyl parathion by square-wave adsorptive stripping voltammetry using a material comprised of chitosan-stabilized silver nanoparticles to modify a glassy carbon electrode. Under optimized experimental conditions, the peak current was found to vary linearly with the concentration of pendimethalin in the range of 70 to 2000 nmol L−1 and with concentration of ethyl parathion in the range of 40 to 8000 nmol L−1. Detection limits of 36 and 40 nmol L−1 were obtained for pendimethalin and ethyl parathion, respectively. The silver - nanoparticle-modified electrode was successfully employed for the analysis of pesticides in tap and mineral water (pendimethalin) and in lettuce and honey (ethyl parathion) samples. Pendimethalin recovery was between 94 and 100 %, and ethyl parathion recovery was between 97 and 101 %, indicating no significant matrix interference effects on the analytical results. The accuracy of the electroanalytical methodology using the proposed modified electrode was also compared to that of the UV–vis spectrophotometric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pandey P, Singh SP, Arya SK, Gupta V, Datta M, Singh S, et al. Application of thiolated gold nanoparticles for the enhancement of glucose oxidase activity. Langmuir. 2007;23:3333–7.

    Article  CAS  Google Scholar 

  2. Pérez-López B, Merkoçi A. Nanoparticles for the development of improved (bio) sensing systems. Anal Bioanal Chem. 2011;399:1577–90.

    Article  Google Scholar 

  3. Rounaghi G, Kakhki RM, Azizi-Toupkanloo H. Voltammetric determination of 4-nitrophenol using a modified carbon paste electrode based on a new synthetic crown ether/silver nanoparticles. Mater Sci Eng C. 2012;32:172–7.

    Article  CAS  Google Scholar 

  4. Zhai H, Liang Z, Chen Z, Chen Z, Wang H, Liu Z, et al. Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim Acta. 2015;171:105–13.

    Article  CAS  Google Scholar 

  5. Habibi B, Jahanbakhshi M. Silver nanoparticles/multi walled carbon nanotubes nanocomposite modified electrode: voltammetric determination of clonazepam. Electrochim Acta. 2014;118:10–7.

    Article  CAS  Google Scholar 

  6. Asadian E, Irajizad A, Shahrokhian S. Voltammetric studies of azathioprine on the surface of graphite electrode modified with graphene nanosheets decorated with Ag nanoparticles. Mater Sci Eng C. 2016;58:1098–104.

    Article  CAS  Google Scholar 

  7. Lima CA, Silva PS, Spinelli A. Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds. Sensors Actuators B Chem. 2014;196:39–45.

    Article  Google Scholar 

  8. Li J, Yin W, Tan Y, Pan H. A sensitive electrochemical molecularly imprinted sensor based on catalytic amplification by silver nanoparticles for 3-indoleacetic acid determination. Sensors Actuators B Chem. 2014;197:109–15.

    Article  CAS  Google Scholar 

  9. Habibi B, Jahanbakhshi M. A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sensors Actuators B Chem. 2014;203:919–25.

    Article  CAS  Google Scholar 

  10. Tang S, Tong P, You X, Lu W, Chen J, Li G, et al. Label free electrochemical sensor for Pb2+ based on graphene oxide mediated deposition of silver nanoparticles. Electrochim Acta. 2016;187:286–92.

    Article  CAS  Google Scholar 

  11. Habibi B, Jahanbakhshi M, Pournaghi-Azar MH. Voltammetric and amperometric determination of hydrogen peroxide using a carbon-ceramic electrode modified with a nanohybrid composite made from single-walled carbon nanotubes and silver nanoparticles. Microchim Acta. 2012;177:185–93.

    Article  CAS  Google Scholar 

  12. Habibi B, Jahanbakhshi M. Sensitive determination of hydrogen peroxide based on a novel nonenzymatic electrochemical sensor: silver nanoparticles decorated on nanodiamonds. J Iran Chem Soc. 2015;12:1431–8.

    Article  CAS  Google Scholar 

  13. Ai L, Jiang J. Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Bioresour Technol. 2013;132:374–7.

    Article  CAS  Google Scholar 

  14. Thomas V, Namdeo M, Mohan YM, Bajpai SK, Bajpai M. Review on polymer, hydrogel and microgel metal nanocomposites: a facile nanotechnological approach. J Macromol Sci A. 2007;45:107–19.

    Article  Google Scholar 

  15. Wei D, Ye Y, Jia X, Yuan C, Qian W. Chitosan as an active support for assembly of metal nanoparticles and application of the resultant bioconjugates in catalysis. Carbohydr Res. 2010;345:74–81.

    Article  CAS  Google Scholar 

  16. Hrapovic S, Majid E, Liu Y, et al. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem. 2006;78:5504–12.

    Article  CAS  Google Scholar 

  17. O’Mahony AM, Wang J. Nanomaterial-based electrochemical detection of explosives: a review of recent developments. Anal Methods. 2013;5:4296–309.

    Article  Google Scholar 

  18. Shah J, Rasul Jan M, Shehzad F, Ara B. Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method. Environ Monit Assess. 2011;175:103–8.

    Article  CAS  Google Scholar 

  19. Dimitrov BD, Gadeva PG, Benova DK, Bineva MV. Comparative genotoxicity of the herbicides Roundup, Stomp and Reglone in plant and mammalian test systems. Mutagenesis. 2006;21:375–82.

    Article  CAS  Google Scholar 

  20. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta. 2012;735:37–45.

    Article  CAS  Google Scholar 

  21. Liu G, Guo W, Yin Z. Covalent fabrication of methyl parathion hydrolase on gold nanoparticles modified carbon substrates for designing a methyl parathion biosensor. Biosens Bioelectron. 2014;53:440–6.

    Article  CAS  Google Scholar 

  22. Papadopoulou-Mourkidou E, Patsias J. Development of a semi-automated high-performance liquid chromatographic-diode array detection system for screening pesticides at trace levels in aquatic systems of the Axios River basin. J Chromatogr A. 1996;726:99–113.

    Article  CAS  Google Scholar 

  23. Seebunrueng K, Santaladchaiyakit Y, Srijaranai S. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples. Chemosphere. 2014;103:51–8.

    Article  CAS  Google Scholar 

  24. Nieto-García AJ, Romero-González R, Garrido-Frenich A. Multi-pesticide residue analysis in nutraceuticals from grape seed extracts by gas chromatography coupled to triple quadrupole mass spectrometry. Food Control. 2015;47:369–80.

    Article  Google Scholar 

  25. Martínez-Uroz MA, Mezcua M, Valles NB, Fernández-Alba AR. Determination of selected pesticides by GC with simultaneous detection by MS (NCI) and μ-ECD in fruit and vegetable matrices. Anal Bioanal Chem. 2012;402:1365–72.

    Article  Google Scholar 

  26. Yu R, Liu Q, Liu J, Wang Q, Wang Y. Concentrations of organophosphorus pesticides in fresh vegetables and related human health risk assessment in Changchun, Northeast China. Food Control. 2016;60:353–60.

    Article  CAS  Google Scholar 

  27. Fenoll J, Hellín P, Martínez CM, Miguel M, Flores P. Multiresidue method for analysis of pesticides in pepper and tomato by gas chromatography with nitrogen-phosphorus detection. Food Chem. 2007;105:711–9.

    Article  CAS  Google Scholar 

  28. Li J-W, Wang Y-L, Yan S, Li X-J, Pan S-Y. Molecularly imprinted calixarene fiber for solid-phase microextraction of four organophosphorous pesticides in fruits. Food Chem. 2016;192:260–7.

    Article  CAS  Google Scholar 

  29. Hegedus G, Bélai I, Székács A. Development of an enzyme-linked immunosorbent assay (ELISA) for the herbicide trifluralin. Anal Chim Acta. 2000;421:121–33.

    Article  CAS  Google Scholar 

  30. Tang T, Deng J, Zhang M, Shi G, Zhou T. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: a universal strategy for ratiometric detection of organophosphorus pesticides. Talanta. 2016;146:55–61.

    Article  CAS  Google Scholar 

  31. Yan X, Li H, Han X, Su X. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron. 2015;74:277–83.

  32. Gerent GG, Gonçalves CQ, da Silva PS, Spinelli A. In situ bismuth-film electrode for square-wave cathodic voltammetric detection of pendimethalin at nanomolar level. Electrochim Acta. 2015;168:379–85.

    Article  CAS  Google Scholar 

  33. Galli A, De Souza D, Machado SAS. Pendimethalin determination in natural water, baby food and river sediment samples using electroanalytical methods. Microchem J. 2011;98:135–43.

    Article  CAS  Google Scholar 

  34. Anandhakumar S, Dhanalakshmi K, Mathiyarasu J. Non-enzymatic organophosphorus pesticide detection using gold atomic cluster modified electrode. Electrochem Commun. 2014;38:15–8.

    Article  CAS  Google Scholar 

  35. Xiang L, Zhao C, Wang J. Sensors and biosensors for pesticide detection. Sens Lett. 2011;9:1184–9.

    Article  CAS  Google Scholar 

  36. Ni Y, Wang L, Kokot S. Simultaneous determination of three herbicides by differential pulse voltammetry and chemometrics. J Environ Sci Health B. 2011;46:328–35.

    Article  CAS  Google Scholar 

  37. Kotouček M, Opravilová M. Voltammetric behaviour of some nitropesticides at the mercury drop electrode. Anal Chim Acta. 1996;329:73–81.

    Article  Google Scholar 

  38. Lima CA, Spinelli A. Electrochemical behavior of progesterone at an ex situ bismuth film electrode. Electrochim Acta. 2013;107:542–8.

    Article  Google Scholar 

  39. Balaa R, Sharmaa RK, Wangoo N. Highly sensitive colorimetric detection of ethyl parathion using gold nanoprobes. Sensors Actuators B Chem. 2015;210:425–30.

    Article  Google Scholar 

  40. Tang JS, Xiang L. Development of a competitive format sorbent assay for the determination of parathion in water using molecular imprinted polymer as specific sorbent carrier. Chin Chem Lett. 2010;21:1361–5.

    Article  CAS  Google Scholar 

  41. Escrig-Tena I, Rodríguez LA, Esteve-Romero J, García-Alvarez-Coque MC. Micellar modified spectrophotometric determination of nitrobenzenes based upon reduction with tin(II), diazotization and coupling with the Bratton–Marshall reagent. Talanta. 1998;47:43–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Brazilian government agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for scholarships and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almir Spinelli.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests involving the submitted manuscript and papers previously published. All authors agree with the publication of the manuscript as submitted in its revised form.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima, C.A., Santana, E.R., Piovesan, J.V. et al. Silver nanoparticle-modified electrode for the determination of nitro compound-containing pesticides. Anal Bioanal Chem 408, 2595–2606 (2016). https://doi.org/10.1007/s00216-016-9367-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9367-5

Keywords

Navigation