Skip to main content

Advertisement

Log in

Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel aptasensor labeled with Mn2+-doped NaYF4:Yb/Er upconversion nanoparticles (NaYF4:Yb,Er/Mn UCNPs) was employed in electrogenerated chemiluminescence (ECL) for the sensitive detection of bisphenol A (BPA). The ECL aptasensor was assembled by immobilizing the thiolated aptamers of BPA covalently on a gold nanoparticle (AuNPs)-modified electrode and pairing with complementary DNA labeled with NaYF4:Yb,Er/Mn UCNPs. The ECL aptasensor can not only rapidly and accurately detect BPA concentrations from 0.05 to 100 ng/mL with a detection limit of 0.037 ng/mL but also provides a new platform for ECL applications based on the use of upconversion nanoparticles as a promising alternative material.

The NaYF4:Yb,Er/Mn UCNPs combining with the BPA aptamer serving as recognition elements create a ECL platform for the sensitive detection of bisphenol A. The change in ECL signals induced by aptamer-target interactions was measured and a significant decrease in intensity was found on interaction with BPA in the concentration range of 0.05 to 100 ng/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huang YQ, Wong CK, Zheng JS, Bouwman H, Barra R, Wahlstrom B, et al. Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int. 2012;42:91–9.

    Article  CAS  Google Scholar 

  2. Rezg R, El-Fazaa S, Gharbi N, Mornagui B. Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int. 2014;64:83–90.

    Article  CAS  Google Scholar 

  3. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30(1):75–95.

    Article  CAS  Google Scholar 

  4. Lakind JS, Goodman M, Mattison DR. Bisphenol A and indicators of obesity, glucose metabolism/type 2 diabetes and cardiovascular disease: a systematic review of epidemiologic research. Crit Rev Toxicol. 2014;44(2):121–50.

    Article  CAS  Google Scholar 

  5. Yoon Y, Westerhoff P, Snyder SA, Esparza M. HPLC-fluorescence detection and adsorption of bisphenol A, 17β-estradiol, and 17α-ethynyl estradiol on powdered activated carbon. Water Res. 2003;37(14):3530–7.

    Article  CAS  Google Scholar 

  6. Li D, Park J, Oh JR. Silyl Derivatization of alkylphenols, chlorophenols, and bisphenol A for simultaneous GC/MS determination. Anal Chem. 2001;73(13):3089–95.

    Article  CAS  Google Scholar 

  7. Sajiki J, Masumizu T. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process. Chemosphere. 2004;57(4):241–52.

    Article  CAS  Google Scholar 

  8. Marchesini GR, Meulenberg E, Haasnoot W, Irth H. Biosensor immunoassays for the detection of bisphenol A. Anal Chim Acta. 2004;528(2005):37–45.

    Google Scholar 

  9. Zhou W, Huang PJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst. 2014;139(11):2627–40.

    Article  CAS  Google Scholar 

  10. Chen A, Yang S. Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron. 2015;71:230–42.

    Article  CAS  Google Scholar 

  11. Sharma R, Ragavan KV, Thakur MS, Raghavarao KS. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens Bioelectron. 2015;74:612–27.

    Article  CAS  Google Scholar 

  12. Hu L, Xu G. Applications and trends in electrochemiluminescence. Chem Soc Rev. 2010;39(8):3275–304.

    Article  CAS  Google Scholar 

  13. Han E, Ding L, Lian H, Ju H. Cytosensing and dynamic monitoring of cell surface carbohydrate expression by electrochemiluminescence of quantum dots. Chem Commun. 2010;46(30):5446–8.

    Article  CAS  Google Scholar 

  14. Li L-L, Ji J, Fei R, Wang C-Z, Lu Q, Zhang J-R, et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater. 2012;22(14):2971–9.

    Article  CAS  Google Scholar 

  15. Lou J, Liu S, Tu W, Dai Z. Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing. Anal Chem. 2015;87(2):1145–51.

    Article  CAS  Google Scholar 

  16. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012;12(2):844–9.

    Article  CAS  Google Scholar 

  17. Bertoncello P, Forster RJ. Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens Bioelectron. 2009;24(11):3191–200.

    Article  CAS  Google Scholar 

  18. Bertoncello P, Stewart AJ, Dennany L. Analytical applications of nanomaterials in electrogenerated chemiluminescence. Anal Bioanal Chem. 2014;406(23):5573–87.

    Article  CAS  Google Scholar 

  19. Ge L, Yu J, Ge S, Yan M. Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal Bioanal Chem. 2014;406(23):5613–30.

    Article  CAS  Google Scholar 

  20. Kirschbaum SE, Baeumner AJ. A review of electrochemiluminescence (ECL) in and for microfluidic analytical devices. Anal Bioanal Chem. 2015;407(14):3911–26.

    Article  CAS  Google Scholar 

  21. Spehar-Deleze AM, Gransee R, Martinez-Montequin S, Bejarano-Nosas D, Dulay S, Julich S, et al. Electrochemiluminescence DNA sensor array for multiplex detection of biowarfare agents. Anal Bioanal Chem. 2015;407(22):6657–67.

    Article  CAS  Google Scholar 

  22. Liu M, Ye Y, Yao C, Zhao W, Huang X. Mn2 + -doped NaYF4:Yb/Er upconversion nanoparticles with amplified electrogenerated chemiluminescence for tumor biomarker detection. J Mater Chem B. 2014;2:6626–33.

    Article  CAS  Google Scholar 

  23. Wu L, Wang J, Yin M, Ren J, Miyoshi D, Sugimoto N, et al. Reduced graphene oxide upconversion nanoparticle hybrid for electrochemiluminescent sensing of a prognostic indicator in early-stage cancer. Small. 2014;10(2):330–6.

    Article  CAS  Google Scholar 

  24. Wu S, Duan N, Zhu C, Ma X, Wang M. Wang Z Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B1 and ochratoxin A using upconversion nanoparticles as multicolor labels. Biosens Bioelectron. 2011;30(1):35–42.

    Article  CAS  Google Scholar 

  25. Yin M, Wu L, Li Z, Ren J, Qu X. Facile in situ fabrication of graphene-upconversion hybrid materials with amplified electrogenerated chemiluminescence. Nanoscale. 2012;4(2):400–4.

    Article  CAS  Google Scholar 

  26. Zhang P, Rogelj S, Nguyen K, Wheele D. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J Am Chem Soc. 2006;128(38):12410–1.

    Article  CAS  Google Scholar 

  27. Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, et al. Development of single-stranded DNA aptamers for specific bisphenol A detection. Oligonucleotides. 2011;21(2):85–91.

    Article  CAS  Google Scholar 

  28. Tian G, Gu Z, Zhou L, Yin W, Liu X, Yan L, et al. Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery. Adv Mater. 2012;24(9):1226–31.

    Article  CAS  Google Scholar 

  29. Wu S, Duan N, Zhang H, Wang Z. Simultaneous detection of microcysin-LR and okadaic acid using a dual fluorescence resonance energy transfer aptasensor. Anal Bioanal Chem. 2015;407(5):1303–12.

    Article  CAS  Google Scholar 

  30. Dai Y, Xiao H, Liu J, Yuan Q, Ma P, Yang D, et al. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J Am Chem Soc. 2013;135(50):18920–9.

    Article  CAS  Google Scholar 

  31. Li LL, Wu P, Hwang K, Lu Y. An exceptionally simple strategy for DNA-functionalized up-conversion nanoparticles as biocompatible agents for nanoassembly, DNA delivery, and imaging. J Am Chem Soc. 2013;135(7):2411–4.

    Article  CAS  Google Scholar 

  32. Li Z, Lv S, Wang Y, Chen S, Liu Z. Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore. J Am Chem Soc. 2015;137(9):3421–7.

    Article  CAS  Google Scholar 

  33. Grignon C, Venisse N, Rouillon S, Brunet B, Bacle A, Thevenot S, et al. Ultrasensitive determination of bisphenol A and its chlorinated derivatives in urine using a high-throughput UPLC-MS/MS method. Anal Bioanal Chem. 2016. doi:10.1007/s00216-015-9288-8.

    Google Scholar 

  34. Lu Y, Peterson JR, Gooding JJ, Lee NA. Development of sensitive direct and indirect enzyme-linked immunosorbent assays (ELISAs) for monitoring bisphenol-A in canned foods and beverages. Anal Bioanal Chem. 2012;403(6):1607–18.

    Article  CAS  Google Scholar 

  35. Moors S, Blaszkewicz M, Bolt HM, Degen GH. Simultaneous determination of daidzein, equol, genistein and bisphenol A in human urine by a fast and simple method using SPE and GC–MS. Mol Nutr Food Res. 2007;51(7):787–98.

    Article  CAS  Google Scholar 

  36. Jiang X, Ding W, Luan C. Molecularly imprinted polymers for the selective determination of trace bisphenol A in river water by electrochemiluminescence. Can J Chem. 2013;91(8):656–61.

    Article  CAS  Google Scholar 

  37. Tu X, Yan L, Luo X, Luo S, Xie Q. Electroanalysis of bisphenol A at a multiwalled carbon nanotubes-gold nanoparticles modified glassy carbon electrode. Electroanalysis. 2009;21(22):2491–4.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National S&T Support Program of China (2015BAD17B02), NSFC (21375049, 31401576), JUSRP51309A, and Synergetic Innovation Center of Food Safety and Quality Control of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Wu, S., Duan, N. et al. Mn2+-doped NaYF4:Yb/Er upconversion nanoparticle-based electrochemiluminescent aptasensor for bisphenol A. Anal Bioanal Chem 408, 3823–3831 (2016). https://doi.org/10.1007/s00216-016-9470-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9470-7

Keywords

Navigation