Skip to main content
Log in

Non-destructive characterisation of the Elephant Moraine 83227 meteorite using confocal Raman, micro-energy-dispersive X-ray fluorescence and Raman-scanning electron microscope-energy-dispersive X-ray microscopies

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The application of a non-destructive analytical procedure to characterise the mineral phases in meteorites is a key issue in order to preserve this type of scarce materials. In the present work, the Elephant Moraine 83227 meteorite, found in Antarctica in 1983 and originated from 4 Vesta asteroid, was analysed by micro-Raman spectroscopy, micro-energy-dispersive X-ray fluorescence and the structural and chemical analyser (Raman spectroscopy coupled with scanning electron microscopy-energy-dispersive spectroscopy) working in both point-by-point and image modes. The combination of all these techniques allows the extraction of, at the same time, elemental, molecular and structural data of the studied microscopic area of the meteorite. The most relevant results of the Elephant Moraine 83227 were the finding of tridymite for the first time in a 4 Vesta meteorite, along with quartz, which means that the meteorite suffered high temperatures at a certain point. Moreover, both feldspar and pyroxene were found as the main mineral phases in the sample. Ilmenite, apatite, chromite and elemental sulphur were also detected as secondary minerals. Finally, calcite was found as a weathering product, which was probably formed in terrestrial weathering processes of the pyroxene present in the sample. Besides, Raman spectroscopy provided information about the conditions that the meteorite experienced; the displacements in some feldspar Raman bands were used to estimate the temperature and pressure conditions to which the Elephant Moraine 83227 was subjected, because we obtained both low and high formation temperature feldspar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antarctic Meteorite Newsletter. 1985. NASA-JSC, Houston.

  2. Grossman JN. The meteoritical bulletin, no. 76, 1994 January: the U.S. Antarctic meteorite collection*. Meteoritics. 29:100–43. https://doi.org/10.1111/j.1945-5100.1994.tb00661.x.

    Article  Google Scholar 

  3. Binzel RP, Xu S. Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science. 1993;260:186–91. https://doi.org/10.1126/science.260.5105.186.

    Article  CAS  PubMed  Google Scholar 

  4. De Sanctis MC, Ammannito E, Capria MT, Tosi F, Capaccioni F, Zambon F, et al. Spectroscopic characterization of mineralogy and its diversity across Vesta. Science. 2012;336:697–700. https://doi.org/10.1126/science.1219270.

    Article  CAS  PubMed  Google Scholar 

  5. Magna T, Šimčíková M, Moynier F. Lithium systematics in howardite–eucrite–diogenite meteorites: implications for crust–mantle evolution of planetary embryos. Geochim Cosmochim Acta. 2014;125:131–45. https://doi.org/10.1016/J.GCA.2013.10.015.

    Article  CAS  Google Scholar 

  6. Scott ERD, Greenwood RC, Franchi IA, Sanders IS. Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites. Geochim Cosmochim Acta. 2009;73:5835–53. https://doi.org/10.1016/j.gca.2009.06.024.

    Article  CAS  Google Scholar 

  7. Herpers U, Vogt S, Bremer K, Hofmann HJ, Suter M, Wieler R, et al. Cosmogenic nuclides in differentiated antarctic meteorites: measurements and model calculations. Planet Space Sci. 1995;43:545–56. https://doi.org/10.1016/0032-0633(94)00191-S.

    Article  CAS  Google Scholar 

  8. Crupi V, Giunta A, Kellett B, Longo F, Maisano G, Majolino D, et al. Handheld and non-destructive methodologies for the compositional investigation of meteorite fragments. Anal Methods. 2014;6:6301–9. https://doi.org/10.1039/C4AY00253A.

    Article  CAS  Google Scholar 

  9. Aramendia J, Gomez-Nubla L, Castro K, Fdez-Ortiz de Vallejuelo S, Arana G, Maguregui M, et al. Overview of the techniques used for the study of non-terrestrial bodies: proposition of novel non-destructive methodology. Trends Anal Chem. 2018;98:36–46. https://doi.org/10.1016/J.TRAC.2017.10.018.

    Article  CAS  Google Scholar 

  10. Gomez-Nubla L, Aramendia J, Fdez-Ortiz de Vallejuelo S, Alonso-Olazabal A, Castro K, Zuluaga MC, et al. Multispectroscopic methodology to study Libyan desert glass and its formation conditions. Anal Bioanal Chem. 2017;409:3597–610. https://doi.org/10.1007/s00216-017-0299-5.

    Article  CAS  PubMed  Google Scholar 

  11. Gomez-Nubla L, Aramendia J, Alonso-Olazabal A, Fdez-Ortiz De Vallejuelo S, Castro K, Ortega LA, et al. Darwin impact glass study by Raman spectroscopy in combination with other spectroscopic techniques. J Raman Spectrosc. 2015;46:913–9. https://doi.org/10.1002/jrs.4700.

    Article  CAS  Google Scholar 

  12. Lopez-Reyes G, Rull F, Venegas G, Westall F, Foucher F, Bost N, et al. Analysis of the scientific capabilities of the ExoMars Raman laser spectrometer instrument. Eur J Mineral. 2013;25:721–33. https://doi.org/10.1127/0935-1221/2013/0025-2317.

    Article  CAS  Google Scholar 

  13. Irazola M, Olivares M, Castro K, Maguregui M, Martínez-Arkarazo I, Madariaga JM. In situ Raman spectroscopy analysis combined with Raman and SEM-EDS imaging to assess the conservation state of 16th century wall paintings. J Raman Spectrosc. 2012;43:1676–84.

    Article  CAS  Google Scholar 

  14. Lafuente B, Downs RT, Yang H, Stone N. The power of databases: the RRUFF project. In: Highlights in Mineralogical Crystallography 2016;1–29.

  15. McKeown DA. Raman spectroscopy and vibrational analyses of albite: from 25 °C through the melting temperature. Am Mineral. 2005;90:1506–17. https://doi.org/10.2138/am.2005.1726.

    Article  CAS  Google Scholar 

  16. Treiman AH, Lanzirotti A, Xirouchakis D. Ancient water on asteroid 4 Vesta: evidence from a quartz veinlet in the Serra de Magé eucrite meteorite. Earth Planet Sci Lett. 2004;219:189–99. https://doi.org/10.1016/S0012-821X(04)00004-4.

    Article  CAS  Google Scholar 

  17. Morris RV, Vaniman DT, Blake DF, Gellert R, Chipera SJ, Rampe EB, et al. Silicic volcanism on Mars evidenced by tridymite in high-SiO 2 sedimentary rock at Gale crater. Proc Natl Acad Sci. 2016;113:7071–6. https://doi.org/10.1073/pnas.1607098113.

    Article  CAS  PubMed  Google Scholar 

  18. Zuber MT, McSween HY, Binzel RP, Elkins-Tanton LT, Konopliv AS, Pieters CM, et al. Origin, internal structure and evolution of 4 vesta. In: The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres; 2012. p. 77–93.

    Google Scholar 

  19. Torre-Fdez I, Aramendia J, Gomez-Nubla L, Castro K, Madariaga JM. Geochemical study of the Northwest Africa 6148 Martian meteorite and its terrestrial weathering processes. J Raman Spectrosc. 2017;48:1536–43. https://doi.org/10.1002/jrs.5148.

    Article  CAS  Google Scholar 

  20. Sarbas B, Töpper W. Mn Manganese. Natural Occurrence. Minerals (Native metal, solid solution, silicide, and carbide. Sulfides and related compounds. Halogenides and oxyhalogenides. Oxides of type MO), 8th ed. Springer-Verlag, Berlin, Germany; 1993.

    Chapter  Google Scholar 

  21. Vandenabeele P. Practical Raman spectroscopy - an introduction. Chichester: John Wiley & Sons, Ltd; 2013.

    Book  Google Scholar 

  22. Morimoto N. Nomenclature of pyroxenes. Mineral Petrol. 1998;39:55–76. https://doi.org/10.1007/BF01226262.

    Article  Google Scholar 

  23. Wang A, Jolliff BL, Haskin LA, Kuebler KE, Viskupic KM. Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am Mineral. 2001;86:790–806. https://doi.org/10.2138/am-2001-0703.

    Article  CAS  Google Scholar 

  24. Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA. Characterization of natural feldspars by raman spectroscopy for future planetary exploration. Can Mineral. 2008;46:1477–500. https://doi.org/10.3749/canmin.46.6.1477.

    Article  CAS  Google Scholar 

  25. Gay P, Taylor WH. The structures of the plagioclase felspars. IV. Variations in the anorthite structure. Acta Crystallogr. 1953;6:647–50. https://doi.org/10.1107/S0365110X53001770.

    Article  CAS  Google Scholar 

  26. Frey F, Jagodzinski H, Prandl W, Yelon WB. Dynamic character of the primitive to body-centered phase transition in anorthite. Phys Chem Miner. 1977;1:227–31. https://doi.org/10.1007/BF00307320.

    Article  CAS  Google Scholar 

  27. Lyne JE, Tauber M, Fought R. An analytical model of the atmospheric entry of large meteors and its application to the Tunguska event. J Geophys Res Planets. 1996;101:23207–12. https://doi.org/10.1029/96JE02047.

    Article  Google Scholar 

  28. Baziotis IP, Liu Y, Decarli PS, Jay Melosh H, McSween HY, Bodnar RJ, et al. The Tissint Martian meteorite as evidence for the largest impact excavation. Nat Commun. 2013;4:1404. https://doi.org/10.1038/ncomms2414.

    Article  CAS  PubMed  Google Scholar 

  29. Stephan K, Jaumann R, De Sanctis MC, Tosi F, Ammannito E, Krohn K, et al. Small fresh impact craters on asteroid 4 Vesta: a compositional and geological fingerprint. J Geophys Res E Planets. 2014;119:771–97. https://doi.org/10.1002/2013JE004388.

    Article  CAS  Google Scholar 

  30. Clenet H, Jutzi M, Barrat JA, Asphaug EI, Benz W, Gillet P. A deep crust-mantle boundary in the asteroid 4 Vesta. Nature. 2014;511:303–6. https://doi.org/10.1038/nature13499.

    Article  CAS  PubMed  Google Scholar 

  31. Ford MH, Auerbach SM, Monson PA. On the mechanical properties and phase behavior of silica: a simple model based on low coordination and strong association. J Chem Phys. 2004;121:8415–22. https://doi.org/10.1063/1.1797979.

    Article  CAS  PubMed  Google Scholar 

  32. Righter K, Drake MJ. A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Meteorit Planet Sci. 1997;32:929–44. https://doi.org/10.1111/j.1945-5100.1997.tb01582.x.

    Article  CAS  Google Scholar 

  33. Klein C, Philpotts AR, Anthony R. Earth materials : introduction to mineralogy and petrology. 2nd ed. Cambridge: Cambridge University Press; 2017.

    Google Scholar 

  34. Neuendorf KKE, Mehl JP, Jackson JA. The glossary of geology. 5th ed. Alexandria: American Geological Institute; 2005.

    Google Scholar 

  35. Losiak A, Velbel MA. Evaporite formation during weathering of Antarctic meteorites--a weathering census analysis based on the ANSMET database. Meteorit Planet Sci. 2011;46:443–58. https://doi.org/10.1111/j.1945-5100.2010.01166.x.

    Article  CAS  Google Scholar 

  36. Jull AJT, Cheng S, Gooding JL, Velbel MA. Rapid growth of magnesium-carbonate weathering products in a stony meteorite from Antarctica. Science. 1988;242:417–9. https://doi.org/10.1126/science.242.4877.417.

    Article  CAS  PubMed  Google Scholar 

  37. Liu T, Bish DL, Socki RA, Harvey RP, Tonui E. Mineralogy and formation of evaporite deposits from the Lewis Cliff ice tongue, Antarctica. Antarct Sci. 2015;27:73–84. https://doi.org/10.1017/S0954102014000406.

    Article  CAS  Google Scholar 

  38. Benzerara K, Menguy N, Guyot F, Dominici C, Gillet P. Nanobacteria-like calcite single crystals at the surface of the Tataouine meteorite. Proc Natl Acad Sci USA. 2003;100:7438–42. https://doi.org/10.1073/pnas.0832464100.

    Article  CAS  PubMed  Google Scholar 

  39. Uroz S, Calvaruso C, Turpault MP, Frey-Klett P. Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol. 2009;17:378–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported through the project “Development of the Raman instrument for the ESA Mission Exomars2018: Science support, equipment testing and operation support” (ref. ESP2014-56138-C3-2-R) funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (FEDER/UE). The thin section sample of the EET 83227 meteorite was kindly provided by the US Antarctic Meteorite Program. US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program, which has been funded by NSF and NASA, and characterised and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Curation Office at NASA Johnson Space Center. Authors thank Raman-LASPEA Laboratory from the SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) of the University of the Basque Country (UPV/EHU) for their collaboration in the analyses [9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imanol Torre-Fdez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torre-Fdez, I., Aramendia, J., Gomez-Nubla, L. et al. Non-destructive characterisation of the Elephant Moraine 83227 meteorite using confocal Raman, micro-energy-dispersive X-ray fluorescence and Raman-scanning electron microscope-energy-dispersive X-ray microscopies. Anal Bioanal Chem 410, 7477–7488 (2018). https://doi.org/10.1007/s00216-018-1363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1363-5

Keywords

Navigation