Skip to main content

Advertisement

Log in

Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) have emerged as one of the most fascinating libraries of porous materials with a huge potential in very diverse application areas. In particular, the bioanalytical and biomedical fields have evolved tremendously due to the emergence of these hybrid inorganic–organic MOF-based materials. This is because these materials possess a series of key properties essential for bioapplications, such as minimal toxicity to living cells, intrinsic biodegradability, and possibility of synthesizing with nanoscale sizes. Additional properties of MOFs such as ultra-large surface-to-volume ratios, tunable pore size, high drug loading capacity, tunable structure and chemical composition, and potential for multiple postsynthetic modification make them ideal candidates for drug delivery. This review highlights recent research progress on MOF-based drug delivery systems (DDS), pointing out the evolution of these systems toward the development of theranostic nanoplatforms. Rather than a comprehensive review, representative recent examples are selected to illustrate such an evolution, and a critical discussion of the advantages and limitations of the different DDS types is given. Finally, the remaining challenges and future opportunities in this field are presented, highlighting that overcoming the current issues will pave the way toward the elusive dream of “personalized medicine.”

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Férey G. Hybrid porous solids: past, present, future. Chem Soc Rev. 2008;37(1):191–214.

    PubMed  Google Scholar 

  2. Férey G. Some suggested perspectives for multifunctional hybrid porous solids. Dalton Trans. 2009;23:4400–15.

    Google Scholar 

  3. Maurin G, Serre C, Cooper A, Férey G. The new age of MOFs and of their porous-related solids. Chem Soc Rev. 2017;46(11):3104–7.

    CAS  PubMed  Google Scholar 

  4. Zhou H-C, Long JR, Yaghi OM. Introduction to metal–organic frameworks. Chem Rev. 2012;112(2):673–4.

    CAS  PubMed  Google Scholar 

  5. Kitagawa S. Metal–organic frameworks (MOFs). Chem Soc Rev. 2014;43(16):5415–8.

    PubMed  Google Scholar 

  6. Batten SR, Champness NR, Chen XM, Garcia-Martinez J, Kitagawa S, Öhrström L, et al. Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013). Pure Appl Chem. 2013;85(8):1715–24.

    CAS  Google Scholar 

  7. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science. 2013;341(6149):1230444.

    PubMed  Google Scholar 

  8. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;402(6759):276–9.

    CAS  Google Scholar 

  9. Park YK, Choi SB, Kim H, Kim K, Won BH, Choi K, et al. Crystal structure and guest uptake of a mesoporous metal–organic framework containing cages of 3.9 and 4.7 nm in diameter. Angew Chem. 2007;46(43):8230–3.

    CAS  Google Scholar 

  10. Deng H, Grunder S, Cordova KE, Valente C, Furukawa H, Hmadeh M, et al. Large-pore apertures in a series of metal-organic frameworks. Science. 2012;336(6084):1018–23.

    CAS  PubMed  Google Scholar 

  11. Spokoyny AM, Kim D, Sumrein A, Mirkin CA. Infinite coordination polymer nano- and microparticle structures. Chem Soc Rev. 2009;38(5):1218–27.

    CAS  PubMed  Google Scholar 

  12. Tanabe KK, Cohen SM. Postsynthetic modification of metal–organic frameworks—a progress report. Chem Soc Rev. 2011;40(2):498–519.

    CAS  PubMed  Google Scholar 

  13. Wang S, McGuirk CM, d’Aquino A, Mason JA, Mirkin CA. Metal–organic framework nanoparticles. Adv Mater. 2018;30(37):1800202.

    Google Scholar 

  14. Yin Z, Wan S, Yang J, Kurmoo M, Zeng M-H. Recent advances in post-synthetic modification of metal–organic frameworks: new types and tandem reactions. Coord Chem Rev. 2019;378:500–12.

    CAS  Google Scholar 

  15. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2011;112(2):933–69.

    PubMed  Google Scholar 

  16. Liu B, Vellingiri K, Jo S-H, Kumar P, Ok YS, Kim K-H. Recent advances in controlled modification of the size and morphology of metal-organic frameworks. Nano Res. 2018;11(9):4441–67.

    CAS  Google Scholar 

  17. Baeza A, Ruiz-Molina D, Vallet-Regí M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin Drug Deliv. 2017;14(6):783–96.

    CAS  PubMed  Google Scholar 

  18. Wuttke S, Lismont M, Escudero A, Rungtaweevoranit B, Parak WJ. Positioning metal-organic framework nanoparticles within the context of drug delivery—a comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials. 2017;123:172–83.

    CAS  PubMed  Google Scholar 

  19. Dincă M, Long JR. Hydrogen storage in microporous metal–organic frameworks with exposed metal sites. Angew Chem. 2008;47(36):6766–79.

    Google Scholar 

  20. Li J-R, Kuppler RJ, Zhou H-C. Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev. 2009;38(5):1477–504.

    CAS  PubMed  Google Scholar 

  21. Li B, Wen H-M, Zhou W, Chen B. Porous metal–organic frameworks for gas storage and separation: what, how, and why? J Phys Chem Lett. 2014;5(20):3468–79.

    CAS  PubMed  Google Scholar 

  22. Kuppler RJ, Timmons DJ, Fang Q-R, Li J-R, Makal TA, Young MD, et al. Potential applications of metal-organic frameworks. Coord Chem Rev. 2009;253(23-24):3042–66.

    CAS  Google Scholar 

  23. Li G, Zhao S, Zhang Y, Tang Z. Metal–organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: recent progress and perspectives. Adv Mater. 2018;30(51):1800702.

    Google Scholar 

  24. Kumar P, Deep A, Kim K-H. Metal organic frameworks for sensing applications. Trends Anal Chem. 2015;73:39–53.

    CAS  Google Scholar 

  25. Ajoyan Z, Marino P, Howarth AJ. (2018). Green applications of metal–organic frameworks. CrystEngComm. 2018;20(39):5899–912.

    CAS  Google Scholar 

  26. Wang B, Xie LH, Wang X, Liu XM, Li J, Li JR. Applications of metal–organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal. Green Energy & Environment. 2018;3(3):191–228.

    Google Scholar 

  27. Gu ZY, Yang CX, Chang NA, Yan XP. Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res. 2012;45(5):734–45.

    CAS  PubMed  Google Scholar 

  28. Rocío-Bautista P, Taima-Mancera I, Pasán J, Pino V. Metal-organic frameworks in green analytical chemistry. Separations. 2019;6(3):33.

    Google Scholar 

  29. Rocío-Bautista P, Pacheco-Fernández I, Pasán J, Pino V. Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?—a review. Anal Chim Acta. 2016;939:26–41.

    PubMed  Google Scholar 

  30. Rocío-Bautista P, González-Hernández P, Pino V, Pasán J, Afonso AM. Metal-organic frameworks as novel sorbents in dispersive-based microextraction approaches. Trends Anal Chem. 2017;90:114–34.

    Google Scholar 

  31. Wang X, Ye N. Recent advances in metal-organic frameworks and covalent organic frameworks for sample preparation and chromatographic analysis. Electrophoresis. 2017;38:3059–78.

    CAS  PubMed  Google Scholar 

  32. Yang SS, Shi MY, Tao ZR. Wang, C, Gu ZY. (2019). Recent applications of metal–organic frameworks in matrix-assisted laser desorption/ionization mass spectrometry. Anal. Bioanal. Chem. 2019;411(19):4509–22.

    CAS  Google Scholar 

  33. Pacheco-Fernández I, González-Hernández P, Pasán J, Ayala JH, Pino V. The rise of metal-organic frameworks in analytical chemistry. In: De la Guardia M, Esteve-Turrillas FA, editors. Handbook of smart materials in analytical chemistry. Hoboken: Wiley; 2016. p. 463–502.

    Google Scholar 

  34. Zhang J, Chen Z. Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A. 2017;1530:1–18.

    CAS  PubMed  Google Scholar 

  35. Li A, Liu X, Chai H, Huang Y. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. Trends Anal Chem. 2018;105:391–403.

    CAS  Google Scholar 

  36. Yadav DK, Ganesan V, Marken F, Gupta R, Sonkar PK. Metal@MOF materials in electroanalysis: silver-enhanced oxidation reactivity towards nitrophenols adsorbed into a zinc metal organic framework—Ag@MOF-5(Zn). Electrochim Acta. 2016;219:482–91.

    CAS  Google Scholar 

  37. Lin W, Rieter WJ, Taylor KM. Modular synthesis of functional nanoscale coordination polymers. Angew Chem. 2009;48(4):650–8.

    CAS  Google Scholar 

  38. Carne A, Carbonell C, Imaz I, Maspoch D. Nanoscale metal–organic materials. Chem Soc Rev. 2011;40(1):291–305.

    CAS  PubMed  Google Scholar 

  39. He C, Liu D, Lin W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev. 2015;115(19):11079–108.

    CAS  PubMed  Google Scholar 

  40. Giménez-Marqués M, Hidalgo T, Serre C, Horcajada P. Nanostructured metal–organic frameworks and their bio-related applications. Coord Chem Rev. 2016;307:342–60.

    Google Scholar 

  41. Morris RE, Brammer L. Coordination change, lability and hemilability in metal–organic frameworks. Chem Soc Rev. 2017;46(17):5444–62.

    CAS  PubMed  Google Scholar 

  42. McKinlay AC, Morris RE, Horcajada P, Férey G, Gref R, Couvreur P, et al. BioMOFs: metal–organic frameworks for biological and medical applications. Angew Chem. 2010;49(36):6260–6.

    CAS  Google Scholar 

  43. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, et al. Metal–organic frameworks in biomedicine. Chem Rev. 2012;112(2):1232–68.

    CAS  PubMed  Google Scholar 

  44. Keskin S, Kızılel S. Biomedical applications of metal organic frameworks. Ind Eng Chem Res. 2011;50(4):1799–812.

    CAS  Google Scholar 

  45. Cai W, Chu CC, Liu G, Wáng YXJ. Metal–organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small. 2015;11(37):4806–22.

    CAS  PubMed  Google Scholar 

  46. Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G. Metal–organic frameworks as efficient materials for drug delivery. Angew Chem. 2006;45(36):5974–8.

    CAS  Google Scholar 

  47. Hua S, De Matos MB, Metselaar JM, Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790.

    PubMed  PubMed Central  Google Scholar 

  48. Northfelt DW, Dezube BJ, Thommes JA, Miller BJ, Fischl MA, Friedman-Kien A, et al. Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol. 1998;16(7):2445–51.

    CAS  PubMed  Google Scholar 

  49. O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol. 2004;15(3):440–9.

    PubMed  Google Scholar 

  50. Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Metal–organic framework-based stimuli-responsive systems for drug delivery. Adv Sci. 2019;6(1):1801526.

    Google Scholar 

  51. Feng J, Xu Z, Dong P, Yu W, Liu F, Jiang Q, et al. Stimuli-responsive multifunctional metal–organic framework nanoparticles for enhanced chemo-photothermal therapy. J Mater Chem B. 2019;7(6):994–1004.

    CAS  Google Scholar 

  52. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater. 2010;9(2):172.

    CAS  PubMed  Google Scholar 

  53. Zhao H-X, Zou Q, Sun S-K, Yu C, Zhang X, Li R-J, et al. Theranostic metal–organic framework core–shell composites for magnetic resonance imaging and drug delivery. Chem Sci. 2016;7(8):5294–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang H, Shang Y, Li Y-H, Sun S-K, Yin X-B. Smart metal–organic framework-based nanoplatforms for imaging-guided precise chemotherapy. ACS Appl Mater Interfaces. 2019;11(2):1886–95.

    PubMed  Google Scholar 

  55. Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. 2018;30(37):1707634.

    Google Scholar 

  56. Wang L, Zheng M, Xie Z. Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise. J Mater Chem B. 2018;6(5):707–17.

    CAS  Google Scholar 

  57. Ibrahim M, Sabouni R, Husseini A, G. Anti-cancer drug delivery using metal organic frameworks (MOFs). Curr Med Chem. 2017;24(2):193–214.

    CAS  PubMed  Google Scholar 

  58. Chedid G, Yassin A. Recent trends in covalent and metal organic frameworks for biomedical applications. Nanomaterials. 2018;8(11):916.

    PubMed Central  Google Scholar 

  59. Liu Y, Zhao Y, Chen X. Bioengineering of metal-organic frameworks for nanomedicine. Theranostics. 2019;9(11):3122–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Della Rocca J, Liu D, Lin W. Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44(10):957–68.

    CAS  PubMed  Google Scholar 

  61. Diring S, Carné-Sánchez A, Zhang J, Ikemura S, Kim C, Inaba H, et al. Light responsive metal–organic frameworks as controllable CO-releasing cell culture substrates. Chem Sci. 2017;8(3):2381–6.

    CAS  PubMed  Google Scholar 

  62. Gao W-Y, Cardenal AD, Wang C-H, Powers DC. In operando analysis of diffusion in porous metal-organic framework catalysts. Chem Eur J. 2019;25(14):3465–76.

    CAS  PubMed  Google Scholar 

  63. An J, Geib SJ, Rosi NL. Cation-triggered drug release from a porous zinc–adeninate metal–organic framework. J Am Chem Soc. 2009;131(24):8376–7.

    CAS  PubMed  Google Scholar 

  64. Sajid M. Toxicity of nanoscale metal organic frameworks: a perspective. Environ Sci Pollut Res. 2016;23(15):14805–7.

    Google Scholar 

  65. Orellana-Tavra C, Haddad S, Marshall RJ, Abánades Lázaro I, Boix G, Imaz I, et al. Tuning the endocytosis mechanism of Zr-based metal–organic frameworks through linker functionalization. ACS Appl Mater Interfaces. 2017;9(41):35516–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2-3):121–36.

    CAS  Google Scholar 

  67. Férey G, Serre C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem Soc Rev. 2009;38(5):1380–99.

    PubMed  Google Scholar 

  68. Cohen SM. Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev. 2011;112(2):970–1000.

    PubMed  Google Scholar 

  69. Cohen SM. The postsynthetic renaissance in porous solids. J Am Chem Soc. 2017;139(8):2855–63.

    CAS  PubMed  Google Scholar 

  70. Islamoglu T, Goswami S, Li Z, Howarth AJ, Farha OK, Hupp JT. Postsynthetic tuning of metal–organic frameworks for targeted applications. Acc Chem Res. 2017;50(4):805–13.

    CAS  PubMed  Google Scholar 

  71. Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK. Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. Chem Soc Rev. 2014;43(16):5896–912.

    CAS  PubMed  Google Scholar 

  72. Bellido E, Hidalgo T, Lozano MV, Guillevic M, Simón-Vázquez R, Santander-Ortega MJ, et al. Heparin-engineered mesoporous iron metal-organic framework nanoparticles: toward stealth drug nanocarriers. Adv Healthc Mater. 2015;4(8):1246–57.

    CAS  PubMed  Google Scholar 

  73. Ning W, Di Z, Yu Y, Zeng P, Di C, Chen D, et al. Imparting designer biorecognition functionality to metal–organic frameworks by a DNA-mediated surface engineering strategy. Small. 2018;14(11):1703812.

    Google Scholar 

  74. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, et al. Flexible porous metal-organic frameworks for a controlled drug delivery. J Am Chem Soc. 2008;130(21):6774–80.

    CAS  PubMed  Google Scholar 

  75. Li X, Lachmanski L, Safi S, Sene S, Serre C, Grenèche J-M, et al. New insights into the degradation mechanism of metal-organic frameworks drug carriers. Sci Rep. 2017;7(1):13142.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Agostoni V, Horcajada P, Noiray M, Malanga M, Aykaç A, Jicsinszky L, et al. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep. 2015;5:7925.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Taylor-Pashow KM, Della Rocca J, Xie Z, Tran S, Lin W. Postsynthetic modifications of iron-carboxylate nanoscale metal–organic frameworks for imaging and drug delivery. J Am Chem Soc. 2009;131(40):14261–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Wuttke S, Braig S, Preiß T, Zimpel A, Sicklinger J, Bellomo C, et al. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells. Chem Commun. 2015;51(87):15752–5.

    CAS  Google Scholar 

  79. Yang J, Chen X, Li Y, Zhuang Q, Liu P, Gu J. Zr-based MOFs shielded with phospholipid bilayers: improved biostability and cell uptake for biological applications. Chem Mater. 2017;29(10):4580–9.

    CAS  Google Scholar 

  80. Illes B, Hirschle P, Barnert S, Cauda V, Wuttke S, Engelke H. Exosome-coated metal–organic framework nanoparticles: an efficient drug delivery platform. Chem Mater. 2017;29(19):8042–6.

    CAS  Google Scholar 

  81. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, et al. One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc. 2016;138(3):962–8.

    CAS  PubMed  Google Scholar 

  82. Ren H, Zhang L, An J, Wang T, Li L, Si X, et al. Polyacrylic acid@ zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem Commun. 2014;50(8):1000–2.

    CAS  Google Scholar 

  83. Liang Z, Yang Z, Yuan H, Wang C, Qi J, Liu K, et al. A protein@ metal–organic framework nanocomposite for pH-triggered anticancer drug delivery. Dalton Trans. 2018;47(30):10223–8.

    CAS  PubMed  Google Scholar 

  84. Lei B, Wang M, Jiang Z, Qi W, Su R, He Z. Constructing redox-responsive metal–organic framework nanocarriers for anticancer drug delivery. ACS Appl Mater Interfaces. 2018;10(19):16698–706.

    CAS  PubMed  Google Scholar 

  85. Chen Y, Li P, Modica JA, Drout RJ, Farha OK. Acid-resistant mesoporous metal–organic framework toward oral insulin delivery: protein encapsulation, protection, and release. J Am Chem Soc. 2018;140(17):5678–81.

    CAS  PubMed  Google Scholar 

  86. Yang X, Tang Q, Jiang Y, Zhang M, Wang M, Mao L. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J Am Chem Soc. 2019;141(9):3782–6.

    CAS  PubMed  Google Scholar 

  87. Chen W-H, Yu X, Cecconello A, Sohn YS, Nechushtai R, Willner I. Stimuli-responsive nucleic acid-functionalized metal–organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem Sci. 2017;8(8):5769–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen WH, Yu X, Liao WC, Sohn YS, Cecconello A, Kozell A, et al. ATP-responsive aptamer-based metal–organic framework nanoparticles (NMOFs) for the controlled release of loads and drugs. Adv Funct Mater. 2017;27(37):1702102.

    Google Scholar 

  89. Roth Stefaniak K, Epley CC, Novak JJ, McAndrew ML, Cornell HD, Zhu J, et al. Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chem Commun. 2018;54(55):7617–20.

    CAS  Google Scholar 

  90. Meng X, Gui B, Yuan D, Zeller M, Wang C. Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release. Sci Adv. 2016;2(8):e1600480.

    PubMed  PubMed Central  Google Scholar 

  91. Carrillo-Carrión C, Martínez R, Navarro Poupard MF, Pelaz B, Polo E, Arenas-Vivo A, et al. Aqueous stable gold nanostar/ZIF-8 nanocomposites for light-triggered release of active cargo inside living cells. Angew Chem. 2019;58(21):7078–82.

    Google Scholar 

  92. Tan L-L, Song N, Zhang SX-A, Li H, Wang B, Yang Y-W. Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases. J Mater Chem B. 2016;4(1):135–40.

    CAS  Google Scholar 

  93. Chen W-H, Luo G-F, Vázquez-González M, Cazelles R, Sohn YS, Nechushtai R, et al. Glucose-responsive metal–organic-framework nanoparticles act as “smart” sense-and-treat carriers. ACS Nano. 2018;12(8):7538–45.

    CAS  PubMed  Google Scholar 

  94. Zhang H, Tian X-T, Shang Y, Li Y-H, Yin X-B. Theranostic Mn-porphyrin metal–organic frameworks for magnetic resonance imaging-guided nitric oxide and photothermal synergistic therapy. ACS Appl Mater Interfaces. 2018;10(34):28390–8.

    CAS  PubMed  Google Scholar 

  95. Deng K, Hou Z, Li X, Li C, Zhang Y, Deng X, et al. Aptamer-mediated up-conversion core/MOF shell nanocomposites for targeted drug delivery and cell imaging. Sci Rep. 2015;5:7851.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Wu M-X, Gao J, Wang F, Yang J, Song N, Jin X, et al. Multistimuli responsive core–shell nanoplatform constructed from Fe3O4@MOF equipped with pillar[6]arene nanovalves. Small. 2018;14(17):1704440.

    Google Scholar 

  97. Zhang Y, Wang L, Liu L, Lin L, Liu F, Xie Z, et al. Engineering metal–organic frameworks for photoacoustic imaging-guided chemo-/photothermal combinational tumor therapy. ACS Appl Mater Interfaces. 2018;10(48):41035–45.

    CAS  PubMed  Google Scholar 

  98. Cai W, Gao H, Chu C, Wang X, Wang J, Zhang P, et al. Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl Mater Interfaces. 2017;9(3):2040–51.

    CAS  PubMed  Google Scholar 

  99. Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46(12):3830–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K. Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano. 2014;8(3):2812–9.

    CAS  PubMed  Google Scholar 

  101. Jia X, Yang Z, Wang Y, Chen Y, Yuan H, Chen H, et al. Hollow mesoporous silica@ metal–organic framework and applications for pH-responsive drug delivery. ChemMedChem. 2018;13(5):400–5.

    CAS  PubMed  Google Scholar 

  102. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489–92.

    CAS  PubMed  Google Scholar 

  103. Meng F, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials. 2009;30(12):2180–98.

    CAS  PubMed  Google Scholar 

  104. Xiao D, Jia H-Z, Ma N, Zhuo R-X, Zhang X-Z. A redox-responsive mesoporous silica nanoparticle capped with amphiphilic peptides by self-assembly for cancer targeting drug delivery. Nanoscale. 2015;7(22):10071–7.

    CAS  PubMed  Google Scholar 

  105. Mo R, Jiang T, DiSanto R, Tai W, Gu Z. ATP-triggered anticancer drug delivery. Nat Commun. 2014;5:3364.

    PubMed  Google Scholar 

  106. Sun W, Gu Z. ATP-responsive drug delivery systems. Expert Opin Drug Deliv. 2016;13(3):311–4.

    PubMed  PubMed Central  Google Scholar 

  107. Gupta V, Tyagi S, Paul A. Development of biocompatible iron-carboxylate metal organic frameworks for pH-responsive drug delivery application. J Nanosci Nanotechnol. 2019;19(2):646–54.

    CAS  PubMed  Google Scholar 

  108. Rwei AY, Wang W, Kohane DS. Photoresponsive nanoparticles for drug delivery. Nano Today. 2015;10(4):451–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Epley CC, Roth KL, Lin S, Ahrenholtz SR, Grove TZ, Morris AJ. Cargo delivery on demand from photodegradable MOF nano-cages. Dalton Trans. 2017;46(15):4917–22.

    CAS  PubMed  Google Scholar 

  110. Tian Z, Yao X, Ma K, Niu X, Grothe J, Xu Q, et al. Metal–organic framework/graphene quantum dot nanoparticles used for synergistic chemo- and photothermal therapy. ACS Omega. 2017;2(3):1249–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Zeng J-Y, Zhang M-K, Peng M-Y, Gong D, Zhang X-Z. Porphyrinic metal–organic frameworks coated gold nanorods as a versatile nanoplatform for combined photodynamic/photothermal/chemotherapy of tumor. Adv Funct Mater. 2018;28(8):1705451.

    Google Scholar 

  112. Grillone A, Ciofani G. Magnetic nanotransducers in biomedicine. Chem Eur J. 2017;23(64):16109–14.

    CAS  PubMed  Google Scholar 

  113. Adedoyin AA, Ekenseair AK. Biomedical applications of magneto-responsive scaffolds. Nano Res. 2018;11(10):5049–64.

    CAS  Google Scholar 

  114. Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today. 2018;23(5):992–1006.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wu Y-n, Zhou M, Li S, Li Z, Li J, Wu B, et al. Magnetic metal–organic frameworks: γ-Fe2O3@MOFs via confined in situ pyrolysis method for drug delivery. Small. 2014;10(14):2927–36.

    CAS  PubMed  Google Scholar 

  116. Wang D, Zhou J, Chen R, Shi R, Xia G, Zhou S, et al. Magnetically guided delivery of DHA and Fe ions for enhanced cancer therapy based on pH-responsive degradation of DHA-loaded Fe3O4@C@MIL-100(Fe) nanoparticles. Biomaterials. 2016;107:88–101.

    CAS  PubMed  Google Scholar 

  117. Li S, Bi K, Xiao L, Shi X. Facile preparation of magnetic metal organic frameworks core–shell nanoparticles for stimuli-responsive drug carrier. Nanotechnology. 2017;28(49):495601.

    PubMed  Google Scholar 

  118. Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AKA, et al. Heat-generating iron oxide nanocubes: subtle “destructurators” of the tumoral microenvironment. ACS Nano. 2014;8(5):4268–83.

    CAS  PubMed  Google Scholar 

  119. Webber MJ, Langer R. Drug delivery by supramolecular design. Chem Soc Rev. 2017;46(21):6600–20.

    CAS  PubMed  Google Scholar 

  120. Braegelman AS, Webber MJ. Integrating stimuli-responsive properties in host-guest supramolecular drug delivery systems. Theranostics. 2019;9(11):3017–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tan L-L, Li H, Qiu Y-C, Chen D-X, Wang X, Pan R-Y, et al. Stimuli-responsive metal–organic frameworks gated by pillar[5]arene supramolecular switches. Chem Sci. 2015;6(3):1640–4.

    CAS  PubMed  Google Scholar 

  122. Tan L-L, Li H, Zhou Y, Zhang Y, Feng X, Wang B, et al. Zn2+-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates. Small. 2015;11(31):3807–13.

    CAS  PubMed  Google Scholar 

  123. Abuçafy MP, Caetano BL, Chiari-Andréo BG, Fonseca-Santos B, do Santos AM, Chorilli M, et al. Supramolecular cyclodextrin-based metal-organic frameworks as efficient carrier for anti-inflammatory drugs. Eur J Pharm Biopharm. 2018;127:112–9.

    PubMed  Google Scholar 

  124. Yang K, Yang K, Chao S, Wen J, Pei Y, Pei Z. A supramolecular hybrid material constructed from pillar[6]arene-based host–guest complexation and ZIF-8 for targeted drug delivery. Chem Commun. 2018;54(70):9817–20.

    CAS  Google Scholar 

  125. Chen Y, Yu B, Xu S, Ma F, Gong J. Core–shell-structured cyclodextrin metal–organic frameworks for programmable cargo release. ACS Appl Mater Interfaces. 2019;11(18):16280–4.

    CAS  PubMed  Google Scholar 

  126. La Thangue NB, Kerr DJ. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol. 2011;8:587.

    PubMed  Google Scholar 

  127. Sadée W, Dai Z. Pharmacogenetics/genomics and personalized medicine. Hum Mol Genet. 2005;14(suppl_2):R207–R14.

    PubMed  Google Scholar 

  128. Diamandis M, White NMA, Yousef GM. Personalized medicine: marking a new epoch in cancer patient management. Mol Cancer Res. 2010;8(9):1175–87.

    CAS  PubMed  Google Scholar 

  129. Kim TH, Lee S, Chen X. Nanotheranostics for personalized medicine. Expert Rev Mol Diagn. 2013;13(3):257–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee D-E, Koo H, Sun I-C, Ryu JH, Kim K, Kwon IC. Multifunctional nanoparticles for multimodal imaging and theragnosis. Chem Soc Rev. 2012;41(7):2656–72.

    CAS  PubMed  Google Scholar 

  131. Ryu JH, Lee S, Son S, Kim SH, Leary JF, Choi K, et al. Theranostic nanoparticles for future personalized medicine. J Control Release. 2014;190:477–84.

    CAS  PubMed  Google Scholar 

  132. Jo SD, Ku SH, Won Y-Y, Kim SH, Kwon IC. Targeted nanotheranostics for future personalized medicine: recent progress in cancer therapy. Theranostics. 2016;6(9):1362–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Yang J-C, Chen Y, Li Y-H, Yin X-B. Magnetic resonance imaging-guided multi-drug chemotherapy and photothermal synergistic therapy with pH and NIR-stimulation release. ACS Appl Mater Interfaces. 2017;9(27):22278–88.

    CAS  PubMed  Google Scholar 

  134. Liu W, Wang Y-M, Li Y-H, Cai S-J, Yin X-B, He X-W, et al. Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal–organic framework. Small. 2017;13(17):1603459.

    Google Scholar 

  135. He L, Wang T, An J, Li X, Zhang L, Li L, et al. Carbon nanodots@zeolitic imidazolate framework-8 nanoparticles for simultaneous pH-responsive drug delivery and fluorescence imaging. CrystEngComm. 2014;16(16):3259–63.

    CAS  Google Scholar 

  136. Penet M-F, Mikhaylova M, Li C, Krishnamachary B, Glunde K, Pathak AP, et al. Applications of molecular MRI and optical imaging in cancer. Future Med Chem. 2010;2(6):975–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Li Y, Tang J, He L, Liu Y, Liu Y, Chen C, et al. Core–shell upconversion nanoparticle@metal–organic framework nanoprobes for luminescent/magnetic dual-mode targeted imaging. Adv Mater. 2015;27(27):4075–80.

    CAS  PubMed  Google Scholar 

  138. Wang D, Zhou J, Shi R, Wu H, Chen R, Duan B, et al. Biodegradable core-shell dual-metal-organic-frameworks nanotheranostic agent for multiple imaging guided combination cancer therapy. Theranostics. 2017;7(18):4605–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Li B, Wang X, Chen L, Zhou Y, Dang W, Chang J, et al. Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics. 2018;8(15):4086–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Howarth AJ, Peters AW, Vermeulen NA, Wang TC, Hupp JT, Farha OK. Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem Mater. 2016;29(1):26–39.

    Google Scholar 

  141. Chen J, Shen K, Li Y. Greening the processes of metal–organic framework synthesis and their use in sustainable catalysis. ChemSusChem. 2017;10(16):3165–87.

    CAS  PubMed  Google Scholar 

  142. Reinsch H. “Green” synthesis of metal-organic frameworks. Eur J Inorg Chem. 2016;27:4290–9.

    Google Scholar 

  143. Julien PA, Mottillo C, Friščić T. Metal–organic frameworks meet scalable and sustainable synthesis. Green Chem. 2017;19(12):2729–47.

    CAS  Google Scholar 

  144. Reinsch H, Bueken B, Vermoortele F, Stassen I, Lieb A, Lillerud KP, et al. Green synthesis of zirconium-MOFs. CrystEngComm. 2015;17(22):4070–4.

    CAS  Google Scholar 

  145. Li F, Duan C, Zhang H, Yan X, Li J, Xi H. Hierarchically porous metal–organic frameworks: green synthesis and high space-time yield. Ind Eng Chem Res. 2018;57(28):9136–43.

    CAS  Google Scholar 

  146. Karadeniz B, Howarth AJ, Stolar T, Islamoglu T, Dejanović I, Tireli M, et al. Benign by design: green and scalable synthesis of zirconium UiO-metal–organic frameworks by water-assisted mechanochemistry. ACS Sustain Chem Eng. 2018;6(11):15841–9.

    CAS  Google Scholar 

  147. Rojas S, Colinet I, Cunha D, Hidalgo T, Salles F, Serre C, et al. Toward understanding drug incorporation and delivery from biocompatible metal–organic frameworks in view of cutaneous administration. ACS Omega. 2018;3(3):2994–3003.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Márquez AG, Hidalgo T, Lana H, Cunha D, Blanco-Prieto MJ, Álvarez-Lorenzo C, et al. Biocompatible polymer–metal–organic framework composite patches for cutaneous administration of cosmetic molecules. J Mater Chem B. 2016;4(43):7031–40.

    Google Scholar 

  149. Baati T, Njim L, Neffati F, Kerkeni A, Bouttemi M, Gref R, et al. In depth analysis of the in vivo toxicity of nanoparticles of porous iron(iii) metal–organic frameworks. Chem Sci. 2013;4(4):1597–607.

    CAS  Google Scholar 

  150. Kundu T, Mitra S, Patra P, Goswami A, Díaz Díaz D, Banerjee R. Mechanical downsizing of a gadolinium(III)-based metal–organic framework for anticancer drug delivery. Chem Eur J. 2014;20(33):10514–8.

    CAS  PubMed  Google Scholar 

  151. Ruyra À, Yazdi A, Espín J, Carné-Sánchez A, Roher N, Lorenzo J, et al. Synthesis, culture medium stability, and in vitro and in vivo zebrafish embryo toxicity of metal–organic framework nanoparticles. Chem Eur J. 2015;21(6):2508–18.

    CAS  PubMed  Google Scholar 

  152. Mohamed NA, Davies RP, Lickiss PD, Ahmetaj-Shala B, Reed DM, Gashaw HH, et al. Chemical and biological assessment of metal organic frameworks (MOFs) in pulmonary cells and in an acute in vivo model: relevance to pulmonary arterial hypertension therapy. Pulm Circ. 2017;7(3):643–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Lu K, He C, Guo N, Chan C, Ni K, Lan G, et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat Biomed Eng. 2018;2(8):600–10.

    CAS  PubMed  Google Scholar 

  154. Gregg ST, Yuan Q, Morris RE, Xiao B. Functionalised solids delivering bioactive nitric oxide gas for therapeutic applications. Mater Today Commun. 2017;12:95–105.

    CAS  Google Scholar 

Download references

Conflict of interest

The author declares that there is no conflict of interest.

Funding

C.C.C. thanks the financial support from the European Union under the H2020-MSCA-IF-2016 program (MSCA-IF-EF-ST Grant Agreement No. 749667).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Carrillo-Carrión.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo-Carrión, C. Nanoscale metal–organic frameworks as key players in the context of drug delivery: evolution toward theranostic platforms. Anal Bioanal Chem 412, 37–54 (2020). https://doi.org/10.1007/s00216-019-02217-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02217-y

Keywords

Navigation