Skip to main content

Advertisement

Log in

Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fatty acids are a major source of structural diversity within the lipidome due to variations in their acyl chain lengths, branching, and cyclization, as well as the number, position, and stereochemistry of double bonds within their mono- and poly-unsaturated species. Here, the utility of 193 nm UltraViolet PhotoDissociation tandem mass spectrometry (UVPD-MS/MS) has been evaluated for the detailed structural characterization of a series of unsaturated fatty acid lipid species. UVPD-MS/MS of unsaturated fatty acids is shown to yield pairs of unique diagnostic product ions resulting from cleavages adjacent to their C=C double bonds, enabling unambiguous localization of the site(s) of unsaturation within these lipids. The effect of several experimental variables on the observed fragmentation behaviour and UVPD-MS/MS efficiency, including the position and number of double bonds, the effect of conjugated versus non-conjugated double bonds, the number of laser pulses, and the influence of alkali metal cations (Li, Na, K) as the ionizing adducts, has been evaluated. Importantly, the abundance of the diagnostic ions is shown to enable relative quantitation of mixtures of fatty acid isomers across a range of molar ratios. Finally, the practical application of 193 nm UVPD-MS/MS is demonstrated via characterization of changes in the ratios of fatty acid double bond positional isomers in isogenic colorectal cancer cell lines. This study therefore demonstrates the practicality of UVPD-MS/MS for the structural characterization of fatty acid isomers in lipidome analysis workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vance JE., Vance DE. Biochemistry of lipids, lipoproteins and membranes. Elsevier; 2008.

  2. Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 2013;6:1353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koriem KMM. A lipidomic concept in infectious diseases. Asian Pacific J. Tropical Biomed. 2017;7:265–74.

    Article  Google Scholar 

  4. Kohno S, Keenan A, Ntambi J, Miyazaki M. Lipidomic insight into cardiovascular diseases. Biochem Biophys Res Commun. 2018;504:590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fahy E, Subramaniam S, Murphy R, Nishijima M, Raetz CRH, Shimizu T, Spener F, van Meer G, Wakelam MJO, Dennis E. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009;50 Suppl:S9–14.

  6. Simopoulos A. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am College Nutr. 2002;21:495–505.

    Article  CAS  Google Scholar 

  7. Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta. 1811;2011:648–56.

    Google Scholar 

  8. Swenson R. Fatty acids. Their chemistry, properties, production, and uses. J. Am. Chem Soc 1965;87:2526–2527.

  9. Kiebish MA, Yang K, Liu X, Mancuso DJ, Guan S, Zhao Z, et al. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res. 2013;54:1312–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Giuseppe C, Gabriella S, Italia Di L. Dietary fatty acids in metabolic syndrome, diabetes and cardiovascular diseases. Current Diabetes Rev 2012;8:2–17.

  11. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, C.-h. Mixed-chain phospholipids: structures and chain-melting behavior. Lipids. 2001;36:1077–97.

  13. Dowhan W. Lipid-dependent membrane protein topogenesis. Annu Rev Biochem. 2009;78:515–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stillwell W, Wassall SR. Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem Phys Lipids. 2003;26:1–27.

    Article  CAS  Google Scholar 

  15. Stubbs CD, Smith AD. Essential fatty acids in membrane: physical properties and function. Biochem Soc Trans. 1990;18:779–81.

    Article  CAS  PubMed  Google Scholar 

  16. Pike L. The challenge of lipid rafts. J. Lipid Res.2009;50:Suppl, S323-S328.

  17. Shaikh SR. Diet-induced docosahexaenoic acid non-raft domains and lymphocyte function. Prostaglandins Leukot Essent Fat Acids. 2010;82:159–64.

    Article  CAS  Google Scholar 

  18. Eder K. Gas chromatographic analysis of fatty acid methyl esters. J Chrom Biomed App. 1995;671:113–31.

    Article  CAS  Google Scholar 

  19. Ecker J, Scherer M, Schmitz G, Liebisch G. A rapid GC–MS method for quantification of positional and geometric isomers of fatty acid methyl esters. J Chrom B. 2012;897:98–104.

    Article  CAS  Google Scholar 

  20. Stoffel W, Chu F, Ahrens EH. Analysis of long-chain fatty acids by gas-liquid chromatography. Anal Chem. 1959;31:307–8.

    Article  CAS  Google Scholar 

  21. Wood R, Lee T. High-performance liquid chromatography of fatty acids: quantitative analysis of saturated, monoenoic, polyenoic and geometrical isomers. J Chromatogr. 1983;254:237–46.

    Article  CAS  Google Scholar 

  22. Li Z, Gu T, Kelder B, Kopchick JJ. Analysis of fatty acids in mouse cells using reversed-phase high-performance liquid chromatography. Chromatographia. 2001;54:463–7.

    Article  CAS  Google Scholar 

  23. Christie WW. Preparation of ester derivatives of fatty acids for chromatographic analysis. Adv Lipid Methodology. 1993;2:e111.

    Google Scholar 

  24. Mitchell TW, Pham H, Thomas MC, Blanksby SJ. Identification of double bond position in lipids: from GC to OzID. J Chromatogr B Analyt Technol Biomed Life Sci. 2009;877:2722–35.

    Article  CAS  PubMed  Google Scholar 

  25. Aveldano MI, VanRollins M, Horrocks LA. Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography. J Lipid Res. 1983;24:83–93.

    CAS  PubMed  Google Scholar 

  26. de la Fuente MA, Luna P, Juárez M. Chromatographic techniques to determine conjugated linoleic acid isomers. TrAC Trends Anal Chem. 2006;25:917–26.

    Article  CAS  Google Scholar 

  27. Holcapek M, Velínská H, Lísa M, Cesla P. Orthogonality of silver-ion and non-aqueous reversed-phase HPLC/MS in the analysis of complex natural mixtures of triacylglycerols. J Sep Sci. 2009;32:3672–80.

    Article  CAS  PubMed  Google Scholar 

  28. Rustam YH, Reid GE. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal Chem. 2018;90:374–97.

    Article  CAS  PubMed  Google Scholar 

  29. Tomer KB, Crow FW, Gross ML. Location of double bond position in unsaturated fatty acids by negative ion MS/MS. J Am Chem Soc. 1983;105:5487–8.

    Article  CAS  Google Scholar 

  30. Jensen NJ, Tomer KB, Gross ML. Collisional activation decomposition mass spectra for locating double bonds in polyunsaturated fatty acids. Anal Chem. 1985;57:2018–21.

    Article  CAS  Google Scholar 

  31. Adams J, Gross ML. Tandem mass spectrometry for collisional activation of alkali-metal-cationized fatty acids: a method for determining double bond location. Anal Chem. 1987;59:1576–82.

    Article  CAS  Google Scholar 

  32. Davoli E, Gross ML. Charge remote fragmentation of fatty acids cationized with alkaline earth metal ions. J Am Soc Mass Spectrom. 1990;1:320–4.

    Article  CAS  PubMed  Google Scholar 

  33. Holman RT. Collisional activation of a series of homoconjugated octadecadienoic acids with fast atom bombardment and tandem mass spectrometry. J Am Soc Mass Spectrom. 1990;1:183–91.

    Article  PubMed  Google Scholar 

  34. Yang K, Zhao Z, Gross R, Han X. Identification and quantitation of unsaturated fatty acid isomers by electrospray ionization tandem mass spectrometry: a shotgun lipidomics approach. Anal Chem. 2011;83:4243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hsu FF, Turk J. Distinction among isomeric unsaturated fatty acids as lithiated adducts by electrospray ionization mass spectrometry using low energy collisionally activated dissociation on a triple stage quadrupole instrument. J Am Soc Mass Spectrom. 1999;10:600–12.

    Article  CAS  PubMed  Google Scholar 

  36. Hsu FF, Turk J. Elucidation of the double-bond position of long-chain unsaturated fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom. 2008;19:1673–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoo H, Håkansson K. Determination of double bond location in fatty acids by manganese adduction and electron induced dissociation. Anal Chem. 2010;82:6940–6.

    Article  CAS  PubMed  Google Scholar 

  38. Thomas M, Mitchell T, Harman D, Deeley J, Nealon J, Blanksby S. Ozone-induced dissociation: elucidation of double bond position within mass-selected lipid ions. Anal Chem. 2008;80:303–11.

    Article  CAS  PubMed  Google Scholar 

  39. Vu N, Brown J, Giles K, Zhang Q. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids. Rapid Commun Mass Spectrom. 2017;31:1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Batarseh A, Abbott S, Duchoslav E, Alqarni A, Blanksby S, Mitchell T. Discrimination of isobaric and isomeric lipids in complex mixtures by combining ultra-high pressure liquid chromatography with collision and ozone-induced dissociation. Int J Mass Spectrom. 2018;431:27–36.

    Article  CAS  Google Scholar 

  41. Kozlowski RL, Mitchell TW, Blanksby SJ. A rapid ambient ionization-mass spectrometry approach to monitoring the relative abundance of isomeric glycerophospholipids. Sci Rep. 2015;5.

  42. Marshall DL, Pham HT, Bhujel M, Chin JS, Yew JY, Mori K, et al. Sequential collision-and ozone-induced dissociation enables assignment of relative acyl chain position in triacylglycerols. Anal Chem. 2016;88:2685–92.

    Article  CAS  PubMed  Google Scholar 

  43. Pham HT, Maccarone AT, Thomas MC, Campbell JL, Mitchell TW, Blanksby SJ. Structural characterization of glycerophospholipids by combinations of ozone- and collision-induced dissociation mass spectrometry: the next step towards “top-down” lipidomics. Analyst. 2014;139:204–14.

    Article  CAS  PubMed  Google Scholar 

  44. Kozlowski RL, Campbell JL, Mitchell TW, Blanksby SJ. Combining liquid chromatography with ozone-induced dissociation for the separation and identification of phosphatidylcholine double bond isomers. Anal Bioanal Chem. 2015;407:5053–64.

    Article  CAS  PubMed  Google Scholar 

  45. Kozlowski RL, Mitchell TW, Blanksby SJ. Separation and identification of phosphatidylcholine regioisomers by combining liquid chromatography with a fusion of collision-and ozone-induced dissociation. Eur J Mass Spectrom. 2015;21:191–200.

    Article  CAS  Google Scholar 

  46. Harris RA, May JC, Stinson CA, Xia Y, McLean JA. Determining double bond position in lipids using online ozonolysis coupled to liquid chromatography and ion mobility-mass spectrometry. Anal Chem. 2018;90:1915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pham HT, Trevitt AJ, Mitchell TW, Blanksby SJ. Rapid differentiation of isomeric lipids by photodissociation mass spectrometry of fatty acid derivatives. Rapid Commun Mass Spectrom. 2013;27:805–15.

    Article  CAS  PubMed  Google Scholar 

  48. Ma X, Chong L, Tian R, Shi R, Hu TY, Ouyang Z, et al. Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction. Proc Natl Acad Sci U S A. 2016;113:2573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murphy RC, Okuno T, Johnson CA, Barkley RM. Determination of double bond positions in polyunsaturated fatty acids using the photochemical Paterno-Buchi reaction with acetone and tandem mass spectrometry. Anal Chem. 2017;89:8545–53.

    Article  CAS  PubMed  Google Scholar 

  50. Ren J, Franklin ET, Xia Y. Uncovering structural diversity of unsaturated fatty acyls in cholesteryl esters via photochemical reaction and tandem mass spectrometry. J Am Soc Mass Spectrom. 2017;28:1432–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang W, Zhang D, Chen Q, Wu J, Ouyang Z, Xia Y. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat Commun. 2019;10:79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Quick MM, Crittenden C, Rosenberg J, Brodbelt J. Characterization of disulfide linkages in proteins by 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. Anal Chem. 2018;90:8523–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Madsen JA, Boutz DR, Brodbelt JS. Ultrafast ultraviolet photodissociation at 193 nm and its applicability to proteomic workflows. J Proteome Res. 2010;9:4205–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fort KL, Dyachenko A, Potel CM, Corradini E, Marino F, Barendregt A, et al. Implementation of ultraviolet photodissociation on a benchtop Q exactive mass spectrometer and its application to phosphoproteomics. Anal Chem. 2016;88:2303–10.

    Article  CAS  PubMed  Google Scholar 

  55. Attard T, Carter M, Fang M, Johnson R, Reid GE. Structural characterization and absolute quantification of microcystin peptides using collision-induced and ultraviolet photo-dissociation tandem mass spectrometry. J Am Soc Mass Spectrom. 2018;29:1812–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mukherjee S, Fang M, Mei Kok M, Kapp EA, Thombare VJ, Huguet R, et al. Establishing signature fragments for identification and sequencing of dityrosine cross-linked peptides using ultraviolet photodissociation mass spectrometry. Anal Chem. 2019;91:12129–33.

    Article  CAS  PubMed  Google Scholar 

  57. O'Brien JP, Needham BD, Henderson JC, Nowicki EM, Trent MS, Brodbelt JS. 193 nm ultraviolet photodissociation mass spectrometry for the structural elucidation of lipid a compounds in complex mixtures. Anal Chem. 2014;86:2138–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Brien JP, Brodbelt JS. Structural characterization of gangliosides and glycolipids via ultraviolet photodissociation mass spectrometry. Anal Chem. 2013;85:10399–407.

    Article  CAS  PubMed  Google Scholar 

  59. Klein D, Brodbelt J. Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 2017;89:1516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Williams P, Klein D, Greer S, Brodbelt J. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J Am Chem Soc. 2017;139:15681–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Macias LA, Feider CL, Eberlin LS, Brodbelt JS. Hybrid 193 nm ultraviolet photodissociation mass spectrometry localizes cardiolipin unsaturations. Anal Chem. 2019;91:12509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ryan E, Nguyen CQN, Shiea C, Reid GE. Detailed structural characterization of sphingolipids via 193 nm ultraviolet photodissociation and ultra high resolution tandem mass spectrometry. J Am Soc Mass Spectrom. 2017;28:1406–19.

    Article  CAS  PubMed  Google Scholar 

  63. Blevins M, Klein D, Brodbelt JS. Localization of cyclopropane modifications in bacterial lipids via 213 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 2019;91:6820–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Brodbelt J. Photodissociation mass spectrometry: new tools for characterization of biological molecules. Chem Soc Rev. 2014;43:2757–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shirasawa S, Furuse M, Yokoyama N, Sasazuki T. Altered growth of human colon cancer cell lines disrupted at activated Ki-ras. Science. 1993;260:85–8.

    Article  CAS  PubMed  Google Scholar 

  66. Lydic TA, Busik JV, Reid GE. A monophasic extraction strategy for the simultaneous lipidome analysis of polar and nonpolar retina lipids. J Lipid Res. 2014;55:1797–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Campbell MT, Chen D, Wallbillich NJ, Glish GL. Distinguishing biologically relevant hexoses by water adduction to the lithium-cationized molecule. Anal Chem. 2017;89:10504–1051.

    Article  CAS  PubMed  Google Scholar 

  68. Gangidi RR, Lokesh BR. Conjugated linoleic acid (CLA) formation in edible oils by photoisomerization: a review. J Food Sci. 2014;79:R781–5.

    Article  CAS  PubMed  Google Scholar 

  69. Coughlan NJA, Scholz MS, Hansen CS, Trevitt AJ, Adamson BD, Bieske EJ. Photo and collision induced isomerization of a cyclic retinal derivative: an ion mobility study. J Am Soc Mass Spectrom. 2016;27:1483–90.

    Article  CAS  PubMed  Google Scholar 

  70. Claeys M, Nizigiyimana L, Van den Heuvel H, Vedernikova I, Haemers A. Charge-remote and charge-proximate fragmentation processes in alkali-cationized fatty acid esters upon high-energy collisional activation. A new mechanistic proposal. J. Mass Spectrom 1998;33:631–643.

  71. Ito J, Mizuochi S, Nakagawa K, Kato S, Miyazawa T. Tandem mass spectrometry analysis of linoleic and arachidonic acid hydroperoxides via promotion of alkali metal adduct formation. Anal Chem. 2015;87:4980–498.

    Article  CAS  PubMed  Google Scholar 

  72. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7:763–77.

    Article  CAS  PubMed  Google Scholar 

  73. Currie E, Schulze A, Zechner R, Walther TC, Farese RV. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ricoult SJ, Yecies JL, Ben-Sahra I, Manning BD. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene. 2016;35:1250–60.

    Article  CAS  PubMed  Google Scholar 

  75. Guillou H, Zadravec D, Martin PGP, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res. 2010;49:186–99.

    Article  CAS  PubMed  Google Scholar 

  76. Tripathy S, Jump DB. Elovl5 regulates the mTORC2-Akt-FOXO1 pathway by controlling hepatic cis-vaccenic acid synthesis in diet-induced obese mice. J Lipid Res. 2013;54:71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vriens K, Christen S, Parik S, Broekaert D, Yoshinaga K, Talebi A, Dehairs J, Escalona-Noguero C, Schmieder R, Cornfield T, Charlton C, Romero-Pérez L, Rossi M, Rinaldi G, Orth MF, Boon R, Kerstens A, Kwan SY, Faubert B, Méndez-Lucas A, Kopitz CC, Chen T, Fernandez-Garcia J, Duarte JAG, Schmitz AA, Steigemann P, Najimi M, Hägebarth A, Van Ginderachter JA, Sokal E, Gotoh N, Wong KK, Verfaillie C, Derua R, Munck S, Yuneva M, Beretta L, DeBerardinis RJ, Swinnen JV, Hodson L, Cassiman D, Verslype C, Christian S, Grünewald S, Grünewald TGP, Fendt SM. Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature. 2019;566:403–406.

Download references

Funding

This research was supported by funding from the Australian Research Council (Grant DP190102464) to GER and OMS, and from the National Health and Medical Research Council (Grant APP1156778) to OMS and GER. OMS is a National Health and Medical Research Council Senior Research Fellow (Grant APP1136119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin E. Reid.

Ethics declarations

Conflict of interest

GER receives research support from Thermo Fisher Scientific. The other authors declare they have no conflict of interests.

Additional information

Published in the topical collection Current Progress in Lipidomics with guest editors Michal Holčapek, Gerhard Liebisch, and Kim Ekroos.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 277 kb)

ESM 2

(PDF 1305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, M., Rustam, Y., Palmieri, M. et al. Evaluation of ultraviolet photodissociation tandem mass spectrometry for the structural assignment of unsaturated fatty acid double bond positional isomers. Anal Bioanal Chem 412, 2339–2351 (2020). https://doi.org/10.1007/s00216-020-02446-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02446-6

Keywords

Navigation