Skip to main content
Log in

Silver nanoflower-coated paper as dual substrate for surface-enhanced Raman spectroscopy and ambient pressure mass spectrometry analysis

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Paper-based analytical devices (PADs) have encountered a wealth of applications in recent years thanks to the numerous advantages of paper as a support. A silver nanoflower (AgNF) modified paper-based dual substrate for both surface-enhanced Raman spectroscopy (SERS) and ambient pressure paper spray mass spectrometry (PS-MS) was developed. AgNFs were immobilized on nylon-coated paper modified with silver and ethylenediamine. The developed substrate was characterized via scanning electron microscopy and infrared spectroscopy. The densely packed nanoscale petals of the AgNFs lead to a large number of so-called hot spots at their overlapping points, which result in an enhancement of the Raman signal. In addition, the presence of the AgNFs produces an increase in the sensitivity of the mass spectrometric analysis as compared with bare paper and nylon/Ag-coated paper. The dual substrate was evaluated for the identification and quantification of ketoprofen in aqueous standards as well as human saliva from healthy volunteers. The method enables the determination of ketoprofen with a limit of detection and limit of quantification via PS-MS of 0.023 and 0.076 mg L−1, respectively, with a relative standard deviation (RSD) of 3.4% at a concentration of 0.1 mg L−1. This dual substrate enables the simple and fast detection of ketoprofen with minimal sample preparation, providing complementary Raman and mass spectrometric information.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nery EW, Kubota LT. Sensing approaches on paper-based devices: a review. Anal Bioanal Chem. 2013;405(24):7673–595.

    Article  Google Scholar 

  2. Díaz-Liñán MC, López-Lorente AI, Cárdenas S, Lucena R. Molecularly imprinted paper-based analytical device obtained by a polymerization-free synthesis. Sens Actuators B Chem. 2019;287:138–46.

    Article  Google Scholar 

  3. Channon RB, Yang Y, Feibelman KM, Geiss BJ, Dandy DS, Henry CS. Development of an electrochemical paper-based analytical device for trace detection of virus particles. Anal Chem. 2018;90(12):7777–83.

    Article  CAS  Google Scholar 

  4. Song W, Wang Y, Huang L, Cheng H, Wu J, Pan Y. Reactive paper spray mass spectrometry for rapid analysis of fomaldehyde in facial masks. Rapid Commun Mass Spectrom. 2019;33(12):1091–6.

    Article  CAS  Google Scholar 

  5. Jang W, Byun H, Kim JH. Rapid preparation of paper-based plasmonic platforms for SERS applications. Mater Chem Phys. 2020;240:122124.

    Article  CAS  Google Scholar 

  6. Ríos-Gómez J, Lucena R, Cárdenas S. Paper supported polystyrene membranes for thin film microextraction. Microchem J. 2017;133:90–5.

    Article  Google Scholar 

  7. Hashemian Z, Khayamian T, Saraji M. Anticodeine aptamer immobilized on a Whatman cellulose paper for thin-film microextraction of codeine from urine followed by electrospray ionization ion mobility spectrometry. Anal Bioanal Chem. 2015;407:1615–23.

    Article  CAS  Google Scholar 

  8. Ríos-Gómez J, Fresco-Cala B, García-Valverde MT, Lucena R, Cárdenas S. Carbon nanohorn suprastructures on a paper support as a sorptive phase. Molecules. 2018;23(6):E1252.

    Article  Google Scholar 

  9. Tsai TT, Huang CY, Chen CA, Shen SW, Wang MC, Cheng CM, et al. Diagnosis of tuberculosis using colorimetric gold nanoparticles on a paper-based analytical device. ACS Sensors. 2017;2(9):1345–54.

    Article  CAS  Google Scholar 

  10. Saraji M, Mehrafza N. Phenyl carbamate functionalized zinc oxide nanorods for paper-based thin film microextraction. RSC Adv. 2017;7:50210–5.

    Article  CAS  Google Scholar 

  11. Zhang MR, Jiang QM, Wang ZG, Zhang SH, Hou F, Pan GB. Three-dimensional gallium nitride nanoflowers supports decorated by gold or silver nanoparticles to fabricate surface-enhanced Raman scattering substrates. Sens Actuators B Chem. 2017;253:652–9.

    Article  CAS  Google Scholar 

  12. Bibikova O, Haas J, López-Lorente AI, Popov A, Kinnunen M, Meglinski I, et al. Towards enhanced optical sensor performance: SEIRA and SERS with plasmonic nanostars. Analyst. 2017;142:951–8.

    Article  CAS  Google Scholar 

  13. Fikiet MA, Khandasammy SR, Mistek E, Ahmed Y, Halámková L, Bueno J, et al. Surface enhanced Raman spectroscopy: a review of recent applications in forensic science. Spectrochim Acta A Mol Biomol Spectrosc. 2018;197:255–60.

    Article  CAS  Google Scholar 

  14. Roy S, Ajmal CM, Baik S, Kim J. Silver nanoflowers for single-particle SERS with 10 pM sensitivity. Nanotechnol. 2017;28:465705.

    Article  Google Scholar 

  15. López-Lorente AI, Simonet BM, Valcárcel M, Mizaikoff B. Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes. Anal Chim Acta. 2013;788:122–8.

    Article  Google Scholar 

  16. Al-Shalalfeh MM, Onawole AT, Saleh TA, Al-Saadi AA. Spherical silver nanoparticles as substrates in surface-enhanced Raman spectroscopy for enhanced characterization of ketoconazole. Mater Sci Eng C Mater Biol Appl. 2017;76:356–64.

    Article  CAS  Google Scholar 

  17. Bibikova O, Haas J, López-Lorente AI, Popov A, Kinnunen M, Ryabchikov Y, et al. Surface enhanced infrared absorption spectroscopy based on gold nanostars and spherical nanoparticles. Anal Chim Acta. 2017;990:141–9.

    Article  CAS  Google Scholar 

  18. Aroca RF. Plasmon enhanced spectroscopy. Phys Chem Chem Phys. 2013;15:5355–63.

    Article  CAS  Google Scholar 

  19. Bi J. Electrodeposited silver nanoflowers as sensitive surface-enhanced Raman scattering sensing substrates. Mater Lett. 2019;236:398–402.

    Article  CAS  Google Scholar 

  20. Wu L, Wu W, Jing X, Huang J, Sun D, Odoom-Wubah T, et al. Trisodium citrate-assisted biosynthesis of silver nanoflowers by Canarium album foliar broths as a platform for SERS detection. Ind Eng Chem Res. 2013;52(14):5085–94.

    Article  CAS  Google Scholar 

  21. Tong J, Xu Z, Bian Y, Niu Y, Zhang Y, Wang Z. Flexible and smart fibers decorated with ag nanoflowers for highly active surface-enhanced Raman scattering detection. J Raman Spectrosc. 2019;50(10):1468–76.

    Article  CAS  Google Scholar 

  22. Assis C, Pereira HV, Amador VS, Augusti R, de Oliveira LS, Sena MM. Combining mid infrared spectroscopy and paper spray mass spectrometry in a data fusion model to predict the composition of coffee blends. Food Chem. 2019;281:71–7.

    Article  CAS  Google Scholar 

  23. da Silva Ferreira P, Fernandes de Abreu e Silva D, Augusti R, Piccin E. Forensic analysis of ballpoint pen inks using paper spray mass spectrometry. Analyst. 2015;140:811–19.

  24. Bartella L, Di Donna L, Napoli A, Sindona G, Mazzotti F. High-throughput determination of vitamin E in extra virgin olive oil by paper spray tandem mass spectrometry. Anal Bioanal Chem. 2019;411(13):2885–90.

    Article  CAS  Google Scholar 

  25. Bartella L, Di Donna L, Napoli A, Siciliano C, Sindona G, Mazzotti F. A rapid method for the assay of methylxanthines alkaloids: theobromine, theophylline and caffeine, in cocoa products and drugs by paper spray tandem mass spectrometry. Food Chem. 2019;278:261–6.

    Article  CAS  Google Scholar 

  26. Liu J, Wang H, Manicke NE, Lin JM, Cooks RG, Ouyang Z. Development, characterization, and application of paper spray ionization. Anal Chem. 2010;82(6):2463–71.

    Article  CAS  Google Scholar 

  27. Yang Q, Manicke NE, Wang H, Petucci C, Cooks G, Ouyang Z. Direct and quantitative analysis of underivatized acylcarnitines in serum and whole blood using paper spray mass spectrometry. Anal Bioanal Chem. 2012;404(5):1389–97.

    Article  CAS  Google Scholar 

  28. Suraritdechachai S, Charoenpakdee C, Young I, Maher S, Vilaivan T, Praneenararat T. Rapid detection of the antibiotic sulfamethazine in pig body fluids by paper spray mass spectrometry. J Agric Food Chem. 2019;67(10):3055–61.

    Article  CAS  Google Scholar 

  29. Liu J, Wang H, Cooks RG, Ouyang Z. Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry. Anal Chem. 2011;83(20):7608–13.

    Article  CAS  Google Scholar 

  30. Wang H, Manicke NE, Yang Q, Zheng L, Shi R, Cooks RG, et al. Direct analysis of biological tissue by paper spray mass spectrometry. Anal Chem. 2011;83(4):1197–201.

    Article  CAS  Google Scholar 

  31. Yu M, Wen R, Jiang L, Huang S, Fang Z, Chen B, et al. Rapid analysis of benzoic acid and vitamin C in beverages by paper spray mass spectrometry. Food Chem. 2018;268:411–5.

    Article  CAS  Google Scholar 

  32. Banerjee S, Basheer C, Zare RN. A study of heterogeneous catalysis by nanoparticle-embedded paper-spray ionization mass spectrometry. Angew Chem Int Ed. 2016;55(41):12807–11.

    Article  CAS  Google Scholar 

  33. Fedick PW, Bills BJ, Manicke NE, Cooks RG. Forensic sampling and analysis from a single substrate: surface-enhanced Raman spectroscopy followed by paper spray mass spectrometry. Anal Chem. 2017;89(20):10973–9.

    Article  CAS  Google Scholar 

  34. Muhammed Ajmal C, Faseela KP, Swati S, Seunghyun B. Hierarchically-structured silver nanoflowers for highly conductive metallic inks with dramatically reduced filler concentration. Sci Rep. 2016;6:34894.

    Article  Google Scholar 

  35. Lara-Ortega FJ, Beneito-Cambra M, Robles-Molina J, García-Reyes JF, Gilbert-López B, Molina-Díaz A. Direct olive oil analysis by mass spectrometry: a comparison of different ambient ionization methods. Talanta. 2018;180:168–75.

    Article  CAS  Google Scholar 

  36. Lai K, Zhang Y, Du R, Zhai F, Rasco BA, Huang Y. Determination of chloramphenicol and crystal violet with surface enhanced Raman spectroscopy. Sens Instrum Food Quality Safety. 2011;5:19–24.

    Article  Google Scholar 

  37. Mao A, Jin X, Gu X, Wei X, Yang G. Rapid, green synthesis and surface-enhanced Raman scattering effect of single-crystal silver nanocubes. J Mol Struct. 2012;1021:158–61.

    Article  CAS  Google Scholar 

  38. Atassi F, Mao C, Masadeh AS, Byrn SR. Solid-state characterization of amorphous and mesomorphous calcium ketoprofen. J Pharm Sci. 2010;99(9):3684–597.

    Article  CAS  Google Scholar 

  39. Numako M, Takayama T, Noge I, Kitgawa Y, Todoroki K, Mizuno H, et al. Dried saliva spot (DSS) as a convenient and reliable sampling for bioanalysis: an application for the diagnosis of diabetes mellitus. Anal Chem. 2016;88:635–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Spanish Ministry of Economy and Competitiveness (CTQ2017-83175R) is gratefully acknowledged. The authors would like to thank Prof. A. Molina, Prof. J.F. García-Reyes and Dr. M. Beneito-Cambra (all of them from the University of Jaen, Spain) for their help with PS-MS technique. Additionally, the authors would like to thank the Central Service for Research Support (SCAI) of the University of Córdoba for the service provided to obtain the micrographs and especially to Carlos Fuentes Almagro, from the Proteomics Units, for all the help with Xcalibur software. This article is based upon work from the Sample Preparation Task Force and Network, supported by the Division of Analytical Chemistry of the European Chemical Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. López-Lorente.

Ethics declarations

Informed consent was obtained for saliva samples from all individual participants (healthy volunteers) involved in the study. The study was approved by the appropriate ethics committee (“Comité Ético de Investigación con humanos”) as part of the “Comité de Bioética y Bioseguridad de la Universidad de Córdoba” and was performed in accordance with the ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ABC Highlights: authored by Rising Stars and Top Experts

Electronic supplementary material

ESM 1

(DOCX 9.03 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Liñán, M.C., García-Valverde, M.T., López-Lorente, A.I. et al. Silver nanoflower-coated paper as dual substrate for surface-enhanced Raman spectroscopy and ambient pressure mass spectrometry analysis. Anal Bioanal Chem 412, 3547–3557 (2020). https://doi.org/10.1007/s00216-020-02603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02603-x

Keywords

Navigation