Skip to main content
Log in

Long-term in situ non-invasive spectroscopic monitoring of weathering processes in open-air prehistoric rock art sites

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, an innovative non-destructive monitoring methodology based on the analysis over time of open-air rock art sites is presented. This approach is based on the combination of in situ spectroscopic and chemometric studies to diagnose and monitor the state of conservation of rock art sites. Data acquired over a period of time by non-invasive analytical techniques such as portable Raman spectrometry (RS) and handheld energy-dispersive X-ray fluorescence (HH-EDXRF) spectrometry are compared to detect physicochemical changes that could affect the rock painting integrity. To demonstrate the applicability of the proposed procedure, three analysis campaigns (between 2013 and 2016) were carried out, analyzing Levantine rock pictographs preserved in the rock shelter of Solana de las Covachas VI (Albacete, Spain; see Electronic Supplementary Material (ESM) Fig. S1). The analyzed areas showed different types of active weathering processes such as gypsum and calcium oxalate formation, giving rise to conservation issues such as painting fading, surface loss, microbial colonizations, and formation of crusts. Results evidence that the proposed methodology can be very useful to monitor chemical changes in the surface of the walls where the rock art is located, thus obtaining crucial information for its preservation and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chalmin E, Menu M, Vignaud C. Analysis of rock art painting and technology of Palaeolithic painters. Meas Sci Technol. 2003;14:1590–7.

    Article  CAS  Google Scholar 

  2. Prinsloo LC, Barnard W, Meiklejohn I, Hall K. The first Raman spectroscopic study of San rock art in the Ukhahlamba Drakensberg Park, South Africa. J Raman Spectrosc. 2008;39:646–54.

    Article  CAS  Google Scholar 

  3. Chalmin E, Sansot E, Orial G, Bousta F, Reiche I. Microanalysis and synthesis of calcite. Growth mechanisms on prehistoric paintings in the Large Cave, Arcy-sur-Cure (Yonne, France). X-Ray Spectrom. 2008;37:424–34.

    Article  CAS  Google Scholar 

  4. Bonneau A, Pearce DG, Pollard AM. A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. J Archaeol Sci. 2012;39:287–94.

    Article  CAS  Google Scholar 

  5. Pitarch A, Ruiz-López JF, Fdez-Ortiz de Vallejuelo S, Hernanz A, Maguregui M, Madariaga JM. In situ characterization by Raman and X-ray fluorescence spectroscopy of post-Paleolithic blackish pictographs exposed to the open air in Los Chaparros shelter (Albalate del Arzobispo, Teruel, Spain). Anal Methods. 2014;6–17:6641–50.

    Article  Google Scholar 

  6. Pomies MP, Menu M, Vignaud C. Red Paleolithic pigments: natural hematite or heated goethite? Archaeometry. 1999;41:185–92.

    Article  Google Scholar 

  7. Vouve J, Brunet J, Vouve F. De l’usage des mineraux de manganese par les artistes de la grotte prehistorique de Lascaux, sud ouest de la France. Stud Conserv. 1992;37:185–92.

    Google Scholar 

  8. Guineau B, Lorblanchet M, Gratuze B, Dulin L, Roger P, Akrish R, et al. Manganese black pigments in prehistoric paintings: the case of the black frieze of Pech Merle (France). Archaeometry. 2001;43:211–25.

    Article  CAS  Google Scholar 

  9. Beck L, Rousselière H, Castaing J, Duran A, Lebon M, Moignard B, et al. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in situ analysis of prehistoric rock art. Talanta. 2014;129:459–64.

    Article  CAS  Google Scholar 

  10. Nuevo MJ, Martín SA, Oliveira C, Oliveira de J. In situ energy dispersive X-ray fluorescence analysis of rock art pigments from the ‘Abrigo dos Gaivões’ and Igreja dos Mouros’ caves (Portugal). X-Ray Spectrom 2012; 41: 1–5.

  11. Olivares M, Castro K, Corchón MS, Gárate D, Murelaga X, Sarmiento A, et al. Non-invasive portable instrumentation to study Palaeolithic rock paintings: the case of La Peña Cave in San Roman de Candamo (Asturias, Spain). J Archaeol Sci. 2013;40:1354–60.

    Article  CAS  Google Scholar 

  12. Hernanz A, Ruiz-López JF, Madariaga JM, Gavrilenko E, Maguregui M, Fdez-Ortiz de Vallejuelo S, et al. Spectroscopic characterisation of crusts interstratified with prehistoric paintings preserved in open-air rock art shelters. J Raman Spectrosc. 2014;45:1236–43.

    Article  CAS  Google Scholar 

  13. Aberg G, Stray H, Dahlin E. Impact of pollution at a stone age rock art site in Oslo, Norway, studied using lead and strontium isotopes. J Archaeol Sci. 1999;26:1483–8.

    Article  Google Scholar 

  14. Taruvinga P, Ndoro W. The vandalism of the Domboshava rock painting site, Zimbabwe: some reflections on approaches to heritage management. Conserv Manag Archaeol Sites. 2003;6-1:3–10.

    Article  Google Scholar 

  15. Tratebas AM, Villa Cerveny N, Dorn RI. The effects of fire on rock art: microscopic evidence reveals the importance of weathering rinds. Phys Geogr. 2004;25-4:313–33.

    Article  Google Scholar 

  16. Alloza R, Royo JI, Recuenco JL, Lecina M, Pérez R, Iglesias MP. La conservación del arte rupestre al aire libre: un desafío formidable. In: Juste Arruga MN, Hernández Prieto MA, Pereta Aybar A, Royo Guillén JI, Andrés Moreno JA, editors. Jornadas técnicas para la gestión del arte rupestre Patrimonio Mundial, Parque Cultural Del Río Vero Alquézar, Huesca, Comarca de Somontano de Barbastro; 2012. p. 89–106.

    Google Scholar 

  17. Ruiz-López JF, Sebastián M, Quesada E, Pereira JM, Fernández Ortiz de Vallejuelo S, Pitarch À, et al. 4D · arte rupestre. Centro de Estudios de Prehistoria y Arte Rupestre. Dirección General de Bienes Culturales. Murcia: Comunidad Autónoma de Murcia; 2016.

    Google Scholar 

  18. Rousaki A, Vargas E, Vázquez C, Aldazábal V, Bellelli C, Carballido M, et al. On-field Raman spectroscopy of Patagonian prehistoric rock art: pigments, alteration products and substrata. Trend Anal Chem. 2018;2018(105):338–51.

    Article  CAS  Google Scholar 

  19. Bourges F, Genthon P, Genty D, Lorblanchet M, D’Hulst D. Conservation of prehistoric caves and stability of their inner climate: lessons from Chauvet and other French caves. Sci Total Environ. 2014;493:79–91.

    Article  CAS  Google Scholar 

  20. Ruiz-López JF, Quesada E, Pereira JM, Pérez R, Alloza R. El proyecto de investigación 4D VULL en Ulldecona. Resultados de la campaña 2015. In Actes de les I Jornadesd’Arqueologia de les Terres del Ebre. Tortosa, 6 i 7 de maig de 2016, Tortosa, 28–44.

  21. Ruiz-López JF, Quesada E, Pereira JM. Diagnosis and monitoring of rock art sites in “4D · arterupestre” projects. Les nouvelles de l’archéologie. 2018;154:63–8.

    Google Scholar 

  22. Rogerio-Candelera MA. Digital image analysis-based strategies for quantitative monitoring of rock art sites. J Archaeol Sci Rep. 2016;10:864–70.

    Google Scholar 

  23. Mazel AD, Giesen MJ. Engagement and management: developing a monitoring system for open-air rock art in the UK and Ireland. Conserv Manag Archaeol Sites. 2019;21(3):160–83.

    Article  Google Scholar 

  24. Franklin N. Monitoring change at indigenous rock art sites in Australia. Aust Archaeol. 2014;79(1):65–76.

    Article  Google Scholar 

  25. García-Guinea MA, San Miguel Ruiz JA. Los abrigos rupestres con pintura levantina de Nerpio. Nuevos hallazgos. Revista del Instituto de Prehistoria y Arqueología Sautuola. 1975;1:75–80.

    Google Scholar 

  26. Alonso Tejada A. El conjunto rupestre de solana de las covachas. In Instituto de estudios Albacete, España: 1980.

  27. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG. The geochemistry of acid mine drainage. Treatise Geochem. 2003;9:149–204.

    Article  Google Scholar 

  28. Eastaugh N, Walsh V, Chaplin T, Siddall R. Pigment compendium, a dictionary and optical microscopy of historical pigments. London: Taylor and Francis; 2013.

    Book  Google Scholar 

  29. Edwards HGM, Newton EM, Russ J. Raman spectroscopic analysis of pigments and substrata in prehistoric rock art. J Mol Struct. 2000;550-551:245–56.

    Article  CAS  Google Scholar 

  30. Edwards HGM, Chalmers JM. Chapter V: case study: prehistoric art in Raman spectroscopy in archaeology and art history. London: Royal Society of Chemistry; 2005.

    Google Scholar 

  31. Hernanz A, Gavira-Vallejo JM, Ruiz-López JF, Edwards HGM. A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. J Raman Spectrosc. 2008;39:972–84.

    Article  CAS  Google Scholar 

  32. Aramendia J, Gomez-Nubla L, Bellot-Gurlet L, Castro K, Arana G, Madariaga JM. Bioimpact on weathering steel surfaces: oxalates formation and the elucidation of their origin. Int Biodeterior Biodegradation. 2015;104:59–66.

    Article  CAS  Google Scholar 

  33. Hernanz A, Gavira-Vallejo JM, Ruiz-López JF. Calcium oxalates and prehistoric paintings. The usefulness of these biomaterials. J Optoelectron Adv Mater. 2007;9:512–21.

    CAS  Google Scholar 

  34. Edwards HGM, Russel NC, Seaward MRD. Calcium oxalate in lichen biodeterioration studied using FT-Raman spectroscopy. Spectrochim Acta A. 1997;53:99–105.

    Google Scholar 

  35. Edwards HGM, Jorge-Villar SE, Pullan D, Hargreaves MD, Hofmann BA, Westall F. Morphological biosignatures from relict fossilised sedimentary geologicalspecimens: a Raman spectroscopic study. J Raman Spectrosc. 2007;38:1352–61.

    Article  CAS  Google Scholar 

  36. Ibarrondo I, Prieto-Taboada N, Martínez-Arkarazo I, Madariaga JM. Resonance Raman imaging as a tool to assess the atmospheric pollution level: carotenoids in Lecanoraceae lichens as bioindicators. Environ Sci Pollut Res. 2016;23:6390–9.

    Article  CAS  Google Scholar 

  37. Mahowald NM, Engelstaedter S, Luo C, Sealy A, Artaxo P, Benitez-Nelson C, et al. Atmospheric iron deposition: global distribution, variability, and human perturbations. Annu Rev Mar Sci. 2009;1:245–78.

    Article  Google Scholar 

  38. Fdez-Ortiz de Vallejuelo S, Gredilla A, Gomez-Nubla L, Ruiz-Romera E, Zabaleta A, Madariaga JM. Portable laser induced breakdown spectrometry to characterize the environmental impact of potentially hazardous elements of suspended particulate matter transported during a storm event in an urban river catchment. Microchem J. 2017;135:171–9.

    Article  CAS  Google Scholar 

  39. García-Florentino C, Maguregui M, Morillas H, Marcaida I, Madariaga JM. A fast in situ non-invasive approach to classify mortars from a construction of high historical value. Microchem J. 2017;133:104–13.

    Article  CAS  Google Scholar 

Download references

Funding

This work has been carried out as a part of the projects “4D · arte rupestre” that were financed by Ministry of Education, Culture and Sports of Spain, in the competitive calls of 2013, 2014, 2015, 2016, and 2018 for intervention in sites inscribed in UNESCO’s World Heritage List. Additionally, it has been partially supported by project IT-742-13 for Consolidated Research Groups, funded by the Basque Country Government. Research by A.P.M. was funded by the Beatriu de Pinós postdoctoral programme (2017 BP-A 00046), the Consolidated Research group programme 2017 SGR 00011 of the Government of Catalonia’s Secretariat for Universities & Research of the Ministry of Economy and Knowledge, and R&D project HAR2017- 86509-P of the Spanish Ministry of Science, Innovation and Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julene Aramendia, Silvia Fdez-Ortiz de Vallejuelo or Juan Francisco Ruiz.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 816 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aramendia, J., de Vallejuelo, S.FO., Maguregui, M. et al. Long-term in situ non-invasive spectroscopic monitoring of weathering processes in open-air prehistoric rock art sites. Anal Bioanal Chem 412, 8155–8166 (2020). https://doi.org/10.1007/s00216-020-02949-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02949-2

Keywords

Navigation