Skip to main content
Log in

Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The increasing use of titanium dioxide nanoparticles in daily use consumer products such as cosmetics, personal care products, food additives, and even medicine has led to growing concerns regarding human safety. It would be ideal to track exposure to this emerging nanopollutant, for example through bioassays, however, so far nanoparticle assessment in biological matrices such as urine remains challenging. The lack of data is mainly due to the limitations of the current metrology, but also to the low expected concentration in human samples. In this study, a quantification method for titanium dioxide nanoparticles in urine has been developed and validated following the ISO/CEI 17025:2017 guidelines. The detection limit for titanium dioxide nanoparticle mass concentration by single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was 0.05 ng mL−1. The particle size limit was determined using three different approaches, with the highest calculated limit value approaching 50 nm. Repeatability and reproducibility of 14% and 18% respectively were achieved for particle mass concentration, and 6% for both parameters for particle size determination. Method trueness and recovery were 98% and 84%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Contado C. Nanomaterials in consumer products: a challenging analytical problem. Front Chem. 2015. https://doi.org/10.3389/fchem.2015.00048.

  2. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013. https://doi.org/10.1186/1743-8977-10-15.

  3. Baranowska-Wójcik E, Szwajgier D, Oleszczuk P, Winiarska-Mieczan A. Effects of titanium dioxide nanoparticles exposure on human health—a review. Biol Trace Elem Res. 2020. https://doi.org/10.1007/s12011-019-01706-6.

  4. Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res. 2016;172:1–36.

    Article  CAS  Google Scholar 

  5. Vidmar J, Milačič R, Ščančar J. Sizing and simultaneous quantification of nanoscale titanium dioxide and a dissolved titanium form by single particle inductively coupled plasma mass spectrometry. Microchem J. 2017;132:391–400.

    Article  CAS  Google Scholar 

  6. Badalova K, Herbello-Hermelo P, Bermejo-Barrera P, Moreda-Piñeiro A. Possibilities of single particle—ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine. J Trace Elem Med Biol. 2019. https://doi.org/10.1016/j.jtemb.2019.04.003.

  7. Commission regulation (EU) 2019/1857. https://eur-lex.europa.eu/eli/reg/2019/1857/oj. Accessed 26 May 2020.

  8. LOI n° 2010–788 du 12 juillet 2010 portant engagement national pour l’environnement - Article 185. 2010–788. 2010. https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000022470434. Accessed 10 Jun 2020.

  9. Lee S, Bi X, Reed RB, Ranville JF, Herckes P, Westerhoff P. Nanoparticle size detection limits by single particle ICP-MS for 40 elements. Environ Sci Technol. 2014;48:10291–300.

    Article  CAS  Google Scholar 

  10. Witzler M, Küllmer F, Günther K. Validating a single-particle ICP-MS method to measure nanoparticles in human whole blood for nanotoxicology. Anal Lett. 2018;51:587–99.

    Article  CAS  Google Scholar 

  11. Cirtiu C-M, Fleury N, Stephan C. Assessing the fate of nanoparticles in biological fluids using SP-ICP-MS. Application Note. 2015. https://www.perkinelmer.com/CMSResources/Images/44-171044APP_012008_01-NexION-350S-Fate-of-NPs-in-Bio-Fluids.pdf. Accessed 7 Apr 2019.

  12. Poitras EP, Levine MA, Harrington JM, Essader AS, Fennell TR, Snyder RW, et al. Development of an analytical method for assessment of silver nanoparticle content in biological matrices by inductively coupled plasma mass spectrometry. Biol Trace Elem Res. 2015;163:184–92.

    Article  CAS  Google Scholar 

  13. Peters RJ, Undas AK, Memelink J, van Bemmel G, Munniks S, Bouwmeester H, et al. Development and validation of a method for the detection of titanium dioxide particles in human tissue with single particle ICP-MS. Curr Trends Anal Bioanlaytical Chem. 2018. https://doi.org/10.36959/525/442.

  14. Krystek P, Tentschert J, Nia Y, Trouiller B, Noël L, Goetz ME, et al. Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry. Anal Bioanal Chem. 2014;406:3853–61.

    PubMed  CAS  Google Scholar 

  15. Salou S, Cirtiu C-M, Larivière D, Fleury N. Assessment of strategies for the formation of stable suspensions of titanium dioxide nanoparticles in aqueous media suitable for the analysis of biological fluids. Anal Bioanal Chem. 2020;412:1469–81.

    Article  CAS  Google Scholar 

  16. ISO/IEC 17025:2017. In: ISO. https://www.iso.org/fr/standard/66912.html. Accessed 2 Apr 2020.

  17. NIST - SRM Order Request System SRM 1898 - Titanium Dioxide Nanomaterial. https://www-s.nist.gov/srmors/view_detail.cfm?srm=1898. Accessed 19 Apr 2020.

  18. Witzler M, Küllmer F, Hirtz A, Günther K. Validation of gold and silver nanoparticle analysis in fruit juices by single-particle ICP-MS without sample pretreatment. J Agric Food Chem. 2016;64:4165–70.

    Article  CAS  Google Scholar 

  19. May TW, Wiedmeyer RH. A Table of polyatomic interferences in ICP-MS. Atomic Spectroscopy. 1998. https://www.perkinelmer.com/CMSResources/Images/44-74379ATL_TableOfPolyatomicInterferences.pdf. Accessed 21 Apr 2020.

  20. Loeschner K, Navratilova J, Købler C, Mølhave K, Wagner S, von der Kammer F, et al. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS. Anal Bioanal Chem. 2013;405:8185–95.

    Article  CAS  Google Scholar 

  21. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem. 2011;83:9361–9.

    Article  CAS  Google Scholar 

  22. Montoro Bustos AR, Purushotham KP, Possolo A, Farkas N, Vladár AE, Murphy KE, et al. Validation of single particle ICP-MS for routine measurements of nanoparticle size and number size distribution. Anal Chem. 2018;90:14376–86.

    Article  CAS  Google Scholar 

  23. De la Calle I, Menta M, Séby F. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: a review. Spectrochim Acta Part B At Spectrosc. 2016;125:66–96.

    Article  CAS  Google Scholar 

  24. Peters RJB, Rivera ZH, van Bemmel G, Marvin HJP, Weigel S, Bouwmeester H. Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat. Anal Bioanal Chem. 2014. https://doi.org/10.1007/s00216-013-7571-0.

  25. Programme d’accréditation des laboratoires d’analyse (Québec). Protocole pour la validation d’une méthode d’analyse en chimie. 2015. http://collections.banq.qc.ca/ark:/52327/2458384. Accessed 6 Jan 2020.

  26. Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR. Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J Anal At Spectrom. 2013. https://doi.org/10.1039/c3ja50100k.

  27. Aznar R, Barahona F, Geiss O, Ponti J, Tadeo JL, Barrero-Moreno J. Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS. Talanta. 2017. https://doi.org/10.1039/c3ja50100k.

  28. Linsinger TPJ, Chaudhry Q, Dehalu V, Delahaut P, Dudkiewicz A, Grombe R, et al. Validation of methods for the detection and quantification of engineered nanoparticles in food. Food Chem. 2013;138:1959–66.

    Article  CAS  Google Scholar 

  29. Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR. Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2011. https://doi.org/10.1039/c0ja00098a.

  30. Yang Y, Long C-L, Li H-P, Wang Q, Yang Z-G. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry. Sci Total Environ. 2016. https://doi.org/10.1016/j.scitotenv.2015.12.150.

  31. Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere. 2016. https://doi.org/10.1016/j.chemosphere.2015.07.081.

  32. Tuoriniemi J, Cornelis G, Hassellöv M. Size discrimination and detection capabilities of single-particle ICPMS for environmental analysis of silver nanoparticles. Anal Chem. 2012;84:3965–72.

    Article  CAS  Google Scholar 

  33. Cirtiu C-M, Stephan C. Single-particle inductively coupled plasma massspectrometry: gold nanoparticles in biological fluids. In: Lyshevski SE, editor. Dekker Encyclopedia of Nanoscience and Nanotechnology, 3rd ed. CRC Press; 2014.

  34. Zeng M-P, Jin Y-P, Jin G-L, Gu M-Y. Characterization of TiO2-PVP nanocomposites prepared by the sol-gel method. J Mater Sci Lett. 2000;19:433–6.

    Article  Google Scholar 

  35. Li J, Inukai K, Takahashi Y, Tsuruta A, Shin W. Effect of PVP on the synthesis of high-dispersion core–shell barium-titanate–polyvinylpyrrolidone nanoparticles. J Asian Ceram Soc. 2017. https://doi.org/10.1016/j.jascer.2017.05.001.

  36. Rossi LM, Fiorio JL, Garcia MAS, Ferraz CP. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Trans. 2018;47:5889–915.

    Article  CAS  Google Scholar 

  37. Dan Y, Shi H, Stephan C, Liang X. Rapid analysis of titanium dioxide nanoparticles in sunscreens using single particle inductively coupled plasma–mass spectrometry. Microchem J. 2015. https://doi.org/10.1016/j.microc.2015.04.018.

  38. Test de Dixon pour les valeurs extrêmes dans Excel | XLSTAT Support Center. https://help.xlstat.com/s/article/test-de-dixon-pour-les-valeurs-extremes-dans-excel?language=fr. Accessed 13 Jun 2020.

  39. Ahamad SR, Alhaider AQ, Raish M, Shakeel F. Metabolomic and elemental analysis of camel and bovine urine by GC–MS and ICP–MS. Saudi J Biol Sci. 2017. https://doi.org/10.1016/j.sjbs.2015.09.001.

  40. Millour S, Nia Y. Determination of Ti from TiO2 nanoparticles in biological materials by different ICP-MS instruments: method validation and applications. J Nanomed Nanotechnol. 2015. https://doi.org/10.4172/2157-7439.1000269.

Download references

Acknowledgements

Author S. Salou wishes to thank Prof. Kevin Wilkinson for providing the SRM 1898 standard, Prof. Anna Ritcey for the calculation advice and tutelage regarding the mass concentration, Dr. Madjid Hadioui from McGill University for the fruitful discussion during ICASS 2019, and Dr. Chady Stephan from PerkinElmer for the discussion regarding this study. We also thank C. Bedwin for her editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dominic Larivière or Ciprian-Mihai Cirtiu.

Ethics declarations

The authors declare that they have no conflicts of interest. The authors alone are responsible for the content of this paper. The urine samples were provided as a reference matrix, for analytical purposes only, by another division of the Centre de Toxicologie du Québec responsible for interlaboratory comparison exercises in biological samples. All volunteers provided written informed consent to the Centre de Toxicologie du Québec before any study-specific procedures or assessments were performed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salou, S., Larivière, D., Cirtiu, CM. et al. Quantification of titanium dioxide nanoparticles in human urine by single-particle ICP-MS. Anal Bioanal Chem 413, 171–181 (2021). https://doi.org/10.1007/s00216-020-02989-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02989-8

Keywords

Navigation