Skip to main content
Log in

Impurity identification in thiamethoxam by high resolution mass spectrometry and computer assisted elucidation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Thiamethoxam (TMX) is a widely used neonicotinoid insecticide in pest control. Identification of structurally related impurities is very important during certified reference material development and pesticide registration, thus it needs to be carefully characterized. In this study, a combined strategy with liquid chromatography-high resolution mass spectrometry and computer assisted elucidation (SIRIUS) has been developed for the impurity elucidation in TMX material. MS and MS/MS spectra were used to score the impurity candidates by isotope score and fragment tree in SIRIUS. TMX, the main component, worked as an anchor for formula identification and structure elucidation of impurity. With this strategy, four impurities were identified, including two byproducts (TMX-OCH3 and TMX-Cl) and two metabolites (clothianidin and TMX-urea). Their fragmentation pathways were concluded, and mechanism of impurity formation was also proposed. This result showed successful application of combining human intelligence with machine learning in impurity identification from chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sparks TC, Crossthwaite AJ, Nauen R, Banba S, Cordova D, Earley F, Ebbinghaus-Kintscher U, Fujioka S, Hirao A, Karmon D, Kennedy R, Nakao T, Popham HJR, Salgado V, Watson GB, Wedel BJ, Wessels FJ. Insecticides, biologics and nematicides: updates to IRAC’s mode of action classification — a tool for resistance management. Pestic Biochem Phys. 2020;167:104587.

    Article  CAS  Google Scholar 

  2. Sparks TC, Nauen R. IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Phys. 2015;121:122–8.

    Article  CAS  Google Scholar 

  3. Maienfisch P, Huerlimann H, Rindlisbacher A, Gsell L, Dettwiler H, Haettenschwiler J, Sieger E, Walti M. The discovery of thiamethoxam: a second-generation neonicotinoid. Pest Manag Sci. 2001;57(2):165–76.

    Article  CAS  Google Scholar 

  4. Mitchell EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A. A worldwide survey of neonicotinoids in honey. Science. 2017;358(6359):109–11.

    Article  CAS  Google Scholar 

  5. Chen M, Collins EM, Tao L, Lu C. Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2013;405(28):9251–64.

    Article  CAS  Google Scholar 

  6. Yang B, Ma W, Wang S, Shi L, Li X, Ma Z, Zhang Q, Li H. Determination of eight neonicotinoid insecticides in Chinese cabbage using a modified QuEChERS method combined with ultra performance liquid chromatography-tandem mass spectrometry. Food Chem. 2022;387:132935.

    Article  CAS  Google Scholar 

  7. Li S, Ren J, Li L, Chen R, Li J, Zhao Y, Chen D, Wu Y. Temporal variation analysis and risk assessment of neonicotinoid residues from tea in China. Environ Pollut. 2020;266(Pt 2):115119.

  8. FAO UN. Thiamethoxam. FAO specifications and evaluations for agricultural pesticides. Food and Agriculture Organization of the United Nations: Rome, Italy, 2014.

  9. Ma W, Yang B, Li J, Li X. Amino-functional metal-organic framework as a general applicable adsorbent for simultaneous enrichment of nine neonicotinoids. Chem Eng J. 2022;434:134629.

    Article  CAS  Google Scholar 

  10. Carbonell-Rozas L, Lara FJ, del Olmo IM, Garcia-Campana AM. Micellar electrokinetic chromatography as efficient alternative for the multiresidue determination of seven neonicotinoids and 6-chloronicotinic acid in environmental samples. Anal Bioanal Chem. 2020;412(24):6231–40.

    Article  CAS  Google Scholar 

  11. Mahai G, Wan Y, Xia W, Wang A, Shi L, Qian X, He Z, Xu S. A nationwide study of occurrence and exposure assessment of neonicotinoid insecticides and their metabolites in drinking water of China. Water Res. 2021;189:116630.

    Article  CAS  Google Scholar 

  12. Butler D. Scientists hail European ban on bee-harming pesticides. Nature. 2018. https://www.nature.com/articles/d41586-018-04987-4/. Accessed 30 July 2022.

  13. France bans all uses of neonicotinoid pesticides. 2018. https://cen.acs.org/environment/pesticides/France-bans-uses-neonicotinoid-pesticides/96/i36. Accessed 1 May 2022.

  14. NHC, MoA, SAMR of PRC. China national food safety standard: maximum residue limits for pesticides in food. GB 2763–2021. China Agriculture Press, Beijing; 2021.

  15. Yang Y, Ma X, Yang C, Wang Y, Cheng J, Zhao J, Dong X, Zhang Q. Eco-friendly and acid-resistant magnetic porous carbon derived from ZIF-67 and corn stalk waste for effective removal of imidacloprid and thiamethoxam from water. Chem Eng J. 2022;430:132999.

    Article  CAS  Google Scholar 

  16. Juhász E. The role of certified reference materials in metrology. Measurement. 1986;4(3):104–10.

    Article  Google Scholar 

  17. Guo Z, Li X, Li H. Certified reference materials and metrological traceability assurance for mycotoxin analysis. J AOAC Int. 2019;102(6):1695–707.

    Article  CAS  Google Scholar 

  18. Li X, Li H, Zhang W, Li X, Zhang Q, Guo Z, Li X, Song S, Zhao G. Development of patulin certified reference material using mass balance and quantitative NMR. World Mycotoxin J. 2021;15(2):135–42.

    Article  Google Scholar 

  19. Long NP, Park S, Anh NH, Kim SJ, Kim HM, Yoon SJ, Lim J, Kwon SW. Advances in liquid chromatography–mass spectrometry-based lipidomics: a look ahead. J Anal Test. 2020;4(3):183–97.

    Article  Google Scholar 

  20. Li M, Josephs RD, Daireaux A, Choteau T, Westwood S, Martos G, Wielgosz RI, Li H. Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography–high-resolution mass spectrometry. Anal Bioanal Chem. 2021;413(7):1861–70.

    Article  CAS  Google Scholar 

  21. Dührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik AV, Meusel M, Dorrestein PC, Rousu J, Böcker S. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods. 2019;16(4):299–302.

    Article  Google Scholar 

  22. Böcker S, Dührkop K. Fragmentation trees reloaded. J Cheminform. 2016;8(1):5.

    Article  Google Scholar 

  23. Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A. 2015;112(41):12580–5.

    Article  Google Scholar 

  24. SAMR of PRC. Metrological technical specification for purity assessment of certified reference materials — organic purity certified reference materials. JJF 1855–2020. Standards Press of China, Beijing; 2020.

  25. Ludwig M, Nothias L-F, Dührkop K, Koester I, Fleischauer M, Hoffmann MA, Petras D, Vargas F, Morsy M, Aluwihare L, Dorrestein PC, Böcker S. Database-independent molecular formula annotation using Gibbs sampling through ZODIAC. Nat Mach Intell. 2020;2(10):629–41.

    Article  Google Scholar 

  26. SIRIUS | Lehrstuhl Bioinformatik Jena. Friedrich-Schiller-Universität Jena. https://bio.informatik.uni-jena.de/software/sirius/. Accessed 1 May 2022.

  27. Yamamuro T, Ohta H, Aoyama M, Watanabe D. Simultaneous determination of neonicotinoid insecticides in human serum and urine using diatomaceous earth-assisted extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr B. 2014;969:85–94.

    Article  CAS  Google Scholar 

  28. JMPR Report. 5.31 Thiamethoxam. Pesticide residues in food Joint FAO/WHO Meeting on Pesticide Residues. 2014.

  29. Chai Y, Chen H, Liu X, Lu C. Degradation of the neonicotinoid pesticides in the atmospheric pressure ionization source. J Am Soc Mass Spectrom. 2018;29(2):373–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Key R&D Program of China (2019YFC1604801).

Author information

Authors and Affiliations

Authors

Contributions

XL: conceptualization, methodology, formal analysis, data curation, investigation, writing — original draft; BY, MT, and YZ: methodology and validation; WM, ZM, and QZ: writing — review and editing; HL: supervision, funding acquisition.

Corresponding author

Correspondence to Xianjiang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1400 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, B., Ma, W. et al. Impurity identification in thiamethoxam by high resolution mass spectrometry and computer assisted elucidation. Anal Bioanal Chem 414, 7203–7210 (2022). https://doi.org/10.1007/s00216-022-04272-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04272-4

Keywords

Navigation