Skip to main content

Advertisement

Log in

Berries: effects on health, preservation methods, and uses in functional foods: a review

  • Review Article
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Berries are widely consumed in different forms (fruits, juice, jams, dried and candied berries), and contain high amounts of phenolic compounds providing several health benefits. Although its consumption continues to grow, most of these fruits are fragile and perishable due to their high moisture content. In this context, the scientific communities are interested in preserving these fruits and extending their shelf life while maintaining their benefits. In addition, the development of functional foods is given special attention by the food industry since the natural ingredients extracted or the whole fruit can be incorporated into different foods and improve their quality. This review goal is to discuss the most abundant bioactive compounds in various berries and their potential health benefits, as well as the different physical technologies its preservation, with a focus on ionizing radiation technology to extend berries’ shelf life and increase its bioactivity for potential enrichment in functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

There is no dataset associated with the article.

References

  1. Sidor A, Drożdżyńska A, Gramza-Michałowska A (2019) Black chokeberry (Aronia melanocarpa)and its products as potential health-promoting factors - an overview. Trends Food Sci Technol 89:45–60

    Article  CAS  Google Scholar 

  2. Paredes-López O, Cervantes-Ceja ML, Vigna-Pérez M, Hernández-Pérez T (2010) Berries: improving human health and healthy aging, and promoting quality life-a review. Plant Foods Hum Nutr 65:299–308

    Article  PubMed  Google Scholar 

  3. Olas B. (2018) Berry Phenolic Antioxidants – Implications for Human Health? .Front Pharmacol. Doi: https://doi.org/10.3389/fphar.2018.00078

  4. Golovinskaia O, Wang C-K (2021) Review of functional and pharmacological activities of berries. Molecules 26:3904. https://doi.org/10.3390/molecules26133904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nile SH, Park SW (2014) Edible berries: bioactive components and their effect on human health. Nutrition. https://doi.org/10.1016/j.nut.2013.04.007

    Article  PubMed  Google Scholar 

  6. Błaszczyk A, Sady S, Sielicka M (2019) The stilbene profile in edible berries. Phytochem Rev 18:37–67. https://doi.org/10.1007/s11101-018-9580-2

    Article  CAS  Google Scholar 

  7. Skrovankova S, Sumczynski D, Mlcek J et al (2015) Bioactive compounds and antioxidant activity in different types of berries. IJMS. https://doi.org/10.3390/ijms161024673

    Article  PubMed  PubMed Central  Google Scholar 

  8. Krüger E, Josuttis M (2014) Effects of growing and climate conditions on berry yield and nutritional quality. Acta Hortic 1017:351–362

    Article  Google Scholar 

  9. Häkkinen SH, Törrönen AR (2000) Content of flavonols and selected Phenolic acids in strawberries and vaccinium species: influence of cultivar, cultivation site and technique. Food Res Int 33:517–524

    Article  Google Scholar 

  10. Szajdek A, Borowska EJ (2008) Bioactive compounds and health-promoting properties of berry fruits: review. Plant Foods Hum Nutr 63:147–156

    Article  CAS  PubMed  Google Scholar 

  11. Lee SG, Vance TM, Nam TG et al (2015) Contribution of anthocyanin composition to total antioxidant capacity of berries. Plant Foods Hum Nutr 70:427–432. https://doi.org/10.1007/s11130-015-0514-5

    Article  CAS  PubMed  Google Scholar 

  12. Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779. https://doi.org/10.1080/16546628.2017.1361779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Pascual- TS, Sanchez-Ballesta M (2008) Anthocyanins: from plant to health. Phytochem Rev 7:281–299

    Article  Google Scholar 

  14. Wang SY, Zheng W (2001) Effect of plant growth temperature on antioxidant capacity in strawberry. J Agric Food Chem 49:4977–4982. https://doi.org/10.1021/jf0106244

    Article  CAS  PubMed  Google Scholar 

  15. Remberg SF, Soønsteby A, Aaby K, Heide OM (2010) Influence of postflowering temperature on fruit size and chemical composition of glen ample raspberry (Rubus Idaeus L.). J Agric Food Chem 58:9120–9128. https://doi.org/10.1021/jf101736q

    Article  CAS  PubMed  Google Scholar 

  16. Åkerström A, Jaakola L, Bång U, Jäderlund A (2010) Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of vaccinium myrtillus L. (Bilberries). J Agric Food Chem 58:11939–11945. https://doi.org/10.1021/jf102407n

    Article  CAS  PubMed  Google Scholar 

  17. Lyons MM, Yu C, Toma RB et al (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem. https://doi.org/10.1021/jf034150f

    Article  PubMed  Google Scholar 

  18. Amarowicz R, Janiak M (2019) Hydrolysable Tannins. Encyclopedia of Food Chemistry. Elsevier, Amsterdam, pp 337–343

    Chapter  Google Scholar 

  19. Shahidi F, Naczk M (2003) Phenolics in Food and Nutraceuticals. CRC Press

    Book  Google Scholar 

  20. Beekwilder J, Hall RD, De Vos CHR (2005) Identification and dietary relevance of antioxidants from raspberry. In Bio Fact. https://doi.org/10.1002/biof.5520230404

    Article  Google Scholar 

  21. Josuttis M, Dietrich H, Treutter D et al (2010) Solar UVB response of bioactives in strawberry (Fragaria × ananassa Duch. L.): a comparison of protected and open-field cultivation. J Agric Food Chem 58:12692–12702

    Article  CAS  PubMed  Google Scholar 

  22. Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591. https://doi.org/10.1055/S-2005-873009

    Article  CAS  PubMed  Google Scholar 

  23. Slimestad R, Torskangerpoll K, Nateland HS et al (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compos Anal 18:61–68

    Article  CAS  Google Scholar 

  24. Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124

    Article  CAS  PubMed  Google Scholar 

  25. Aiyer HS, Srinivasan C, Gupta RC (2008) Dietary berries and ellagic acid diminish estrogen-mediated mammary tumorigenesis ∈ ACI rats. Nutr Cancer 60:227–234

    Article  PubMed  Google Scholar 

  26. Gülçin İ, Topal F, Çakmakçı R et al (2011) Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.). J Food Sci 76:C585–C593

    Article  PubMed  Google Scholar 

  27. Wang SY, Zheng W, Galletta GJ (2002) Cultural system affects fruit quality and antioxidant capacity in strawberries. J Agric Food Chem 50:6534–6542. https://doi.org/10.1021/JF020614I

    Article  CAS  PubMed  Google Scholar 

  28. Veberic R, Slatnar A, Bizjak J et al (2015) Anthocyanin composition of different wild and cultivated berry species. LWT - Food Sci Technol 60:509–517

    Article  CAS  Google Scholar 

  29. Ballesteros-Vivas D, Alvarez-Rivera G, León C et al (2019) Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J Funct Foods. 63:103567

    Article  CAS  Google Scholar 

  30. Barak V, Halperin T, Kalickman I (2001) The effect of Sambucol, a black elderberry-based, natural product, on the production of human cytokines: I.Inflammatory cytokines. Eur Cytokine Netw 12:290–296

    CAS  PubMed  Google Scholar 

  31. Kinoshita E, Hayashi K, Katayama H et al (2012) Anti-influenza virus effects of elderberry juice and its fractions. Biosci Biotechnol Biochem. https://doi.org/10.1271/bbb.120112

    Article  PubMed  Google Scholar 

  32. Zagayko AL, Kravchenko GB, Krasilnikova OA, Ogai YO (2013) Grape polyphenols increase the activity of HDL enzymes in old and obese rats. Oxid Med Cell Longev. https://doi.org/10.1155/2013/593761

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu X, Beecher G, Holden J et al (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54:4069–4075

    Article  CAS  PubMed  Google Scholar 

  34. Zakay-Rones Z, Varsano N, Zlotnik M et al (1995) Inhibition of several strains of influenza virus in vitro and reduction of symptoms by an elderberry extract (Sambucus nigra L) during an Outbreak of Influenza B Panama. J Altern Complement Med. https://doi.org/10.1089/acm.1995.1.361

    Article  PubMed  Google Scholar 

  35. Krawitz C, Mraheil MA, Stein M et al (2011) Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement Altern Med 11:16–21. https://doi.org/10.1186/1472-6882-11-16

    Article  PubMed  PubMed Central  Google Scholar 

  36. da Silva PM, Kwon Y-I, Apostolidis E et al (2008) Functionality of bioactive compounds in brazilian strawberry (Fragaria × ananassa Duch.) cultivars: evaluation of Hyperglycemia and hypertension potential using in vitro models. J Agric Food Chem. https://doi.org/10.1021/jf0732758

    Article  PubMed  Google Scholar 

  37. De Silva ABKH, Rupasinghe HPV (2020) Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. J Food Compos Anal 88:103402. https://doi.org/10.1016/j.jfca.2019.103402

    Article  CAS  Google Scholar 

  38. Wang H, Huang R, Li H et al (2021) Serum metabolomic analysis of the anti-diabetic effect of Ginseng berry in type II diabetic rats based on ultra high-performance liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 196:113897. https://doi.org/10.1016/j.jpba.2021.113897

    Article  CAS  PubMed  Google Scholar 

  39. Törrönen R, Kolehmainen M, Sarkkinen E et al (2012) Postprandial glucose, insulin, and free fatty acid responses to sucrose consumed with blackcurrants and lingonberries in healthy women. Am J Clin Nutr. https://doi.org/10.3945/ajcn.112.042184

    Article  PubMed  Google Scholar 

  40. Roy S, Khanna S, Alessio HM et al (2002) Anti-angiogenic property of edible berries. Free Radic Res. https://doi.org/10.1080/1071576021000006662

    Article  PubMed  Google Scholar 

  41. Correa-Betanzo J, Allen-Vercoe E, McDonald J et al (2014) Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chem 165:522–531. https://doi.org/10.1016/j.foodchem.2014.05.135

    Article  CAS  PubMed  Google Scholar 

  42. Wojdyło A, Figiel A, Oszmiański J (2009) Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits. J Agric Food Chem. https://doi.org/10.1021/jf802507j

    Article  PubMed  Google Scholar 

  43. Sablani SS, Andrews PK, Davies NM et al (2011) Effects of air and freeze drying on phytochemical content of conventional and organic berries. Dry Technol. https://doi.org/10.1080/07373937.2010.483047

    Article  Google Scholar 

  44. Verma RC, Gupta A (2004) Effect of pre-treatments on quality of solar-dried amla. J Food Eng 65:397–402. https://doi.org/10.1016/j.jfoodeng.2004.02.010

    Article  Google Scholar 

  45. Bustos MC, Rocha-Parra D, Sampedro I et al (2018) The influence of different air-drying conditions on bioactive compounds and antioxidant activity of berries. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b05395

    Article  PubMed  Google Scholar 

  46. Polydera A, Stoforos N, Taoukis P (2003) Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J Food Eng 60:21–29. https://doi.org/10.1016/S0260-8774(03)00006-2

    Article  Google Scholar 

  47. Rabie MA, Soliman AZ, Diaconeasa ZS, Constantin B (2015) Effect of pasteurization and shelf life on the physicochemical properties of Physalis ( P hysalis peruviana L.) Juice. J Food Process Preserv 39:1051–1060. https://doi.org/10.1111/jfpp.12320

    Article  CAS  Google Scholar 

  48. Azofeifa G, Quesada S, Pérez AM et al (2015) Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. J Food Compos Anal. https://doi.org/10.1016/j.jfca.2015.01.015

    Article  Google Scholar 

  49. Žlabur JŠ, Mikulec N, Doždor L et al (2021) Preservation of biologically active compounds and nutritional potential of quick-frozen berry fruits of the genus rubus. Processes. https://doi.org/10.3390/PR9111940

    Article  Google Scholar 

  50. Marques LG, Silveira AM, Freire JT (2006) Freeze-drying characteristics of tropical fruits. Dry Technol. https://doi.org/10.1080/07373930600611919

    Article  Google Scholar 

  51. Chan TVCT, Reader H. (2000) Understanding Microwave Heating Cavities. In: Artech House Publishers

  52. Pillai SD, Shayanfar S (2017) Electron Beam Technology and Other Irradiation Technology Applications in the Food Industry. Top. Curr, Chem, p 375

    Google Scholar 

  53. Tahergorabi R, Matak KE, Jaczynski J (2012) Application of electron beam to inactivate Salmonella in food: Recent developments. Food Res Int. https://doi.org/10.1016/j.foodres.2011.02.003

    Article  Google Scholar 

  54. Maraei RW, Elsawy KM (2017) Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. J Radiat Res Appl Sci 10:80–87. https://doi.org/10.1016/j.jrras.2016.12.004

    Article  CAS  Google Scholar 

  55. Barkaoui S, Madureira J, Santos PMP et al (2020) Effect of Ionizing radiation and refrigeration on the antioxidants of strawberries. Food Bioprocess Technol 13:1516–1527. https://doi.org/10.1007/s11947-020-02490-1

    Article  CAS  Google Scholar 

  56. Garcia LC, Pereira LM, de Luca Sarantópoulos CIG, Hubinger MD (2012) Effect of antimicrobial starch edible coating on shelf-life of fresh strawberries. Packag Technol Sci. https://doi.org/10.1002/pts.987

    Article  Google Scholar 

  57. Majeed A, Muhammad Z, Majid A et al (2014) Impact of low doses of gamma irradiation on shelf life and chemical quality of strawberry (Fragariaxananassa) cv. ‘Corona.’ J Anim Plant Sci 24:1531–1536

    Google Scholar 

  58. Barkaoui S, Mankai M, Miloud NB et al (2021) Effect of gamma radiation coupled to refrigeration on antioxidant capacity, sensory properties and shelf life of strawberries. LWT. https://doi.org/10.1016/j.lwt.2021.112088

    Article  Google Scholar 

  59. Barkaoui S, Mankai M, Miloud NB et al (2021) E-beam irradiation of strawberries: investigation of microbiological, physicochemical, sensory acceptance properties and bioactive content. Innov Food Sci Emerg Technol 73:102769. https://doi.org/10.1016/j.ifset.2021.102769

    Article  CAS  Google Scholar 

  60. Yu L, Reitmeier CA, Love MH (1996) Strawberry texture and pectin content as affected by electron beam irradiation. J Food Sci 61:844–846. https://doi.org/10.1111/j.1365-2621.1996.tb12216.x

    Article  CAS  Google Scholar 

  61. Yoon Y-S, Ameer K, Song B-S et al (2020) Effects of X-ray irradiation on the postharvest quality characteristics of ‘Maehyang’ strawberry (Fragaria × ananassa). Food Chem. https://doi.org/10.1016/j.foodchem.2020.126817

    Article  PubMed  Google Scholar 

  62. Yoon Y-S, Kim J-K, Lee K-C et al (2020) Effects of electron-beam irradiation on postharvest strawberry quality. J Food Process Preserv 44:e14665. https://doi.org/10.1111/jfpp.14665

    Article  CAS  Google Scholar 

  63. GOST Standard R 52349 (2005) Food Products. Functional Food Products. Terms and Definitions (Moscow: Standartinform)

  64. Jennings A, Welch AA, Spector T et al (2014) Intakes of anthocyanins and flavones are associated with biomarkers of insulin resistance and inflammation in women. J Nutr 144:202–208. https://doi.org/10.3945/jn.113.184358

    Article  CAS  PubMed  Google Scholar 

  65. Lasekan O (2014) Exotic berries as a functional food. Curr Opin Clin Nutr Metab Care 17:589–595. https://doi.org/10.1097/MCO.0000000000000109

    Article  CAS  PubMed  Google Scholar 

  66. Qin Y-Y, Zhang Z-H, Li L et al (2013) Antioxidant effect of pomegranate rind powder extract, pomegranate juice, and pomegranate seed powder extract as antioxidants in raw ground pork meat. Food Sci Biotechnol. https://doi.org/10.1007/s10068-013-0184-8

    Article  Google Scholar 

  67. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. https://doi.org/10.1016/j.diabres.2009.10.007

    Article  PubMed  Google Scholar 

  68. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. https://doi.org/10.1002/ijc.29210

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bray F, Jemal A, Grey N et al (2012) Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(12)70211-5

    Article  PubMed  Google Scholar 

  70. IARC (2019) Cancer today: Colorectal cancer

  71. Medina-Remón A, Kirwan R, Lamuela-Raventós RM, Estruch R (2018) Dietary patterns and the risk of obesity, type 2 diabetes mellitus, cardiovascular diseases, asthma, and neurodegenerative diseases. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2016.1158690

    Article  PubMed  Google Scholar 

  72. Takahama U, Hirota S (2018) Interactions of flavonoids with α-amylase and starch slowing down its digestion. Food Funct. https://doi.org/10.1039/C7FO01539A

    Article  PubMed  Google Scholar 

  73. Lim J, Kim DK, Shin H et al (2019) Different inhibition properties of catechins on the individual subunits of mucosal α-glucosidases as measured by partially-purified rat intestinal extract. Food Funct. https://doi.org/10.1039/C9FO00990F

    Article  PubMed  Google Scholar 

  74. Lachowicz S, Świeca M, Pejcz E (2021) Biological activity, phytochemical parameters, and potential bioaccessibility of wheat bread enriched with powder and microcapsules made from Saskatoon berry. Food Chem 338:128026. https://doi.org/10.1016/j.foodchem.2020.128026

    Article  CAS  PubMed  Google Scholar 

  75. Kan L, Oliviero T, Verkerk R et al (2020) Interaction of bread and berry polyphenols affects starch digestibility and polyphenols bio-accessibility. J Funct Foods. https://doi.org/10.1016/j.jff.2020.103924

    Article  Google Scholar 

  76. Park JB, Lee KY, Lee HG (2021) Physicochemical and antioxidant properties of muffins with acai berry concentrate-loaded nanocapsules. Korean J Food Sci Technol 53:181–186. https://doi.org/10.9721/KJFST.2021.53.2.181

    Article  Google Scholar 

  77. Bustos MC, Paesani C, Quiroga F, León AE (2019) Technological and sensorial quality of berry-enriched pasta. Cereal Chem 96:967–976. https://doi.org/10.1002/cche.10201

    Article  CAS  Google Scholar 

  78. Bustos MC, Vignola MB, Paesani C, León AE (2020) Berry fruits-enriched pasta: effect of processing and in vitro digestion on phenolics and its antioxidant activity, bioaccessibility and potential bioavailability. Int J Food Sci Technol 55:2104–2112. https://doi.org/10.1111/ijfs.14453

    Article  CAS  Google Scholar 

  79. Molnar D, Brnčić SR, Vujić L et al (2015) Characterization of biscuits enriched with black currant and jostaberry powder. Hrvat Časopis za Prehrambenu Tehnol Biotehnol i Nutr - Croat J Food Technol Biotechnol Nutr 10:31–36

    Google Scholar 

  80. Sipos P, Nyárádi R (2016) Use of juvenile grape berry as antioxidant rich food ingredient. Anal Tech Szeged. https://doi.org/10.14232/analecta.2016.2.79-85

  81. Bora P, Ragaee S, Abdel-Aal ESM (2019) Effect of incorporation of goji berry by-product on biochemical, physical and sensory properties of selected bakery products. LWT 112:108225. https://doi.org/10.1016/j.lwt.2019.05.123

    Article  CAS  Google Scholar 

  82. Lorenzo JM, Pateiro M (2013) Influence of fat content on physico-chemical and oxidative stability of foal liver pâté. Meat Sci. https://doi.org/10.1016/j.meatsci.2013.04.045

    Article  PubMed  Google Scholar 

  83. WHO (2015) Cancer: Carcinogenicity of the consumption of red meat and processed meat. In: https://www.who.int/news-room/q-a-detail/cancer-carcinogenicity-of-the-consumption-of-red-meat-and-processed-meat

  84. Doolaege EHA, Vossen E, Raes K et al (2012) Effect of rosemary extract dose on lipid oxidation, colour stability and antioxidant concentrations, in reduced nitrite liver pâtés. Meat Sci. https://doi.org/10.1016/j.meatsci.2011.11.034

    Article  PubMed  Google Scholar 

  85. Herrmann SS, Duedahl-Olesen L, Christensen T et al (2015) Dietary exposure to volatile and non-volatile N-nitrosamines from processed meat products in Denmark. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2015.03.008

    Article  PubMed  Google Scholar 

  86. Domínguez R, Pateiro M, Gagaoua M et al (2019) A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 8:1–31. https://doi.org/10.3390/antiox8100429

    Article  CAS  Google Scholar 

  87. Maqsood S, Benjakul S (2011) Comparative studies on molecular changes and pro-oxidative activity of haemoglobin from different fish species as influenced by pH. Food Chem. https://doi.org/10.1016/j.foodchem.2010.07.011

    Article  Google Scholar 

  88. Naveena BM, Sen AR, Vaithiyanathan S et al (2008) Comparative efficacy of pomegranate juice, pomegranate rind powder extract and BHT as antioxidants in cooked chicken patties. Meat Sci. https://doi.org/10.1016/j.meatsci.2008.06.005

    Article  PubMed  Google Scholar 

  89. Carpenter R, O’Grady MN, O’Callaghan YC et al (2007) Evaluation of the antioxidant potential of grape seed and bearberry extracts in raw and cooked pork. Meat Sci 76:604–610. https://doi.org/10.1016/j.meatsci.2007.01.021

    Article  CAS  PubMed  Google Scholar 

  90. Puupponen-Pimia R, Nohynek L, Meier C et al (2001) Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol. https://doi.org/10.1046/j.1365-2672.2001.01271.x

    Article  PubMed  Google Scholar 

  91. Rauha J-P, Remes S, Heinonen M et al (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol. https://doi.org/10.1016/S0168-1605(00)00218-X

    Article  PubMed  Google Scholar 

  92. Rey AI, Hopia A, Kivikari R, Kahkonen M (2005) Use of natural food/plant extracts: cloudberry (Rubus Chamaemorus), beetroot (Beta Vulgaris “Vulgaris”) or willow herb (Epilobium angustifolium) to reduce lipid oxidation of cooked pork patties. LWT - Food Sci Technol 38:363–370. https://doi.org/10.1016/j.lwt.2004.06.010

    Article  CAS  Google Scholar 

  93. Jia N, Kong B, Liu Q et al (2012) Antixidant activity of black currant (Ribes nigrum L.) extract and its inhibitory effect on lipid and protein oxidation of pork patties during chilled storage. Meat Sci 91:533–539. https://doi.org/10.1016/j.meatsci.2012.03.010

    Article  CAS  PubMed  Google Scholar 

  94. Ganhão R, Estévez M, Armenteros M, Morcuende D (2013) Mediterranean berries as inhibitors of lipid oxidation in porcine burger patties subjected to cooking and chilled storage. J Integr Agric 12:1982–1992. https://doi.org/10.1016/S2095-3119(13)60636-X

    Article  Google Scholar 

  95. Armenteros M, Morcuende D, Ventanas S, Estévez M (2013) Application of natural antioxidants from strawberry tree (Arbutus unedo L.) and dog rose (Rosa canina L.) to Frankfurters subjected to refrigerated storage. J Integr Agric 12:1972–1981. https://doi.org/10.1016/S2095-3119(13)60635-8

    Article  Google Scholar 

  96. Ganhão R, Morcuende D, Estévez M (2010) Protein oxidation in emulsified cooked burger patties with added fruit extracts: Influence on colour and texture deterioration during chill storage. Meat Sci 85:402–409. https://doi.org/10.1016/j.meatsci.2010.02.008

    Article  CAS  PubMed  Google Scholar 

  97. Mitev A, Kuzelov A, Joshevska E (2019) Application of ground goji berry fruits in macedonian bacon-folk sausage. Comptes Rendus L’Academie Bulg des Sci. https://doi.org/10.7546/CRABS.2019.02.18

    Article  Google Scholar 

  98. Sodini I, Remeuf F, Haddad S, Corrieu G (2004) The relative effect of milk base, starter, and process on yogurt texture: a review. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408690490424793

    Article  PubMed  Google Scholar 

  99. Saint-Eve A, Lévy C, Martin N, Souchon I (2006) Influence of Proteins on the Perception of flavored stirred yogurts. J Dairy Sci. https://doi.org/10.3168/jds.S0022-0302(06)72157-9

    Article  PubMed  Google Scholar 

  100. Pereira E, Barros L, Ferreira I (2013) Relevance of the mention of antioxidant properties: in yogurt labels in vitro evaluation and chromatographic analysis. Antioxidants. https://doi.org/10.3390/antiox2020062

    Article  PubMed  PubMed Central  Google Scholar 

  101. Najgebauer-Lejko D, Liszka K, Tabaszewska M, Domagała J (2021) Probiotic yoghurts with sea buckthorn, elderberry, and sloe fruit purees. Molecules. https://doi.org/10.3390/molecules26082345

    Article  PubMed  PubMed Central  Google Scholar 

  102. Raikos V, Ni H, Hayes H, Ranawana V (2019) Antioxidant properties of a yogurt beverage enriched with salal (Gaultheria shallon) berries and blackcurrant (ribes nigrum) pomace during cold storage. Beverages. https://doi.org/10.3390/beverages5010002

    Article  Google Scholar 

  103. Dimitrellou D, Solomakou N, Kokkinomagoulos E, Kandylis P (2020) Yogurts supplemented with juices from grapes and berries. Foods. https://doi.org/10.3390/foods9091158

  104. Wallace TC, Giusti MM (2008) Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from berberis boliviana L. as compared to other natural/synthetic colorants. J Food Sci 73:C241–C248. https://doi.org/10.1111/j.1750-3841.2008.00706.x

    Article  CAS  PubMed  Google Scholar 

  105. Oliveira A, Alexandre EMC, Coelho M et al (2015) Incorporation of strawberries preparation in yoghurt: Impact on phytochemicals and milk proteins. Food Chem. https://doi.org/10.1016/j.foodchem.2014.08.107

    Article  PubMed  Google Scholar 

  106. International Dairy Foods Association (IDFA) (2004) Dairy Facts. Washington, DC.

  107. Sturza R, Sandulachi E, Cojocari D et al (2019) Antimicrobial properties of berry powders in cream cheese. J Eng Sci. https://doi.org/10.5281/zenodo.3464222

  108. Terpou A, Gialleli A-I, Bosnea L et al (2017) Novel cheese production by incorporation of sea buckthorn berries ( Hippophae rhamnoides L.) supported probiotic cells. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2016.11.021

    Article  Google Scholar 

  109. Grek O, Pshenychna T, Krasulya O, et al (2017) The influence of berry puree on microbiological indicators of cheese product during storage. Food and Environment Safety Journal. 2017 Feb 1;15(4).

  110. Borisova A, Ruzyanova A, Tyaglova A, Polikarpova K (2020) Berry raw materials in functional soft cheese production. Food Process Tech Technol. https://doi.org/10.21603/2074-9414-2020-1-11-20

    Article  Google Scholar 

  111. Gutiérrez-Méndez N, Balderrama-Carmona A, García-Sandoval SE et al (2019) Proteolysis and rheological properties of cream cheese made with a plant-derived coagulant from solanum elaeagnifolium. Foods. https://doi.org/10.3390/foods8020044

  112. Bilbao-Sainz C, Thai S, Sinrod AJG et al (2019) Functionality of freeze-dried berry powder on frozen dairy desserts. J Food Process Preserv. https://doi.org/10.1111/jfpp.14076

    Article  Google Scholar 

  113. Goff HD, Hartel RW (2013) Ice Cream, Springer. U. New York, NY

    Book  Google Scholar 

  114. Costa MGM, Ooki GN, Vieira ADS et al (2017) Synbiotic Amazonian palm berry (açai, Euterpe oleracea Mart.) ice cream improved Lactobacillus rhamnosus GG survival to simulated gastrointestinal stress. Food Funct 8:731–740. https://doi.org/10.1039/C6FO00778C

    Article  CAS  PubMed  Google Scholar 

  115. Goraya RK, Bajwa U (2015) Enhancing the functional properties and nutritional quality of ice cream with processed amla (Indian gooseberry). J Food Sci Technol 52:7861–7871. https://doi.org/10.1007/s13197-015-1877-1

    Article  PubMed  PubMed Central  Google Scholar 

  116. Naeem MA, Hassan LK, El-Aziz MA (2019) Enhancing the pro-health and physical properties of ice cream fortified with concentrated golden berry juice. Acta Sci Pol Technol Aliment. https://doi.org/10.17306/J.AFS.2019.0613

    Article  PubMed  Google Scholar 

  117. Ürkek B, Şengül M, Akgül HI, Kotan TE (2019) Antioxidant Activity, Physiochemical and Sensory Characteristics of Ice Cream Incorporated with Sloe Berry (Prunus spinosa L). Int J Food Eng. https://doi.org/10.1515/ijfe-2018-0029

  118. Database on Polyphenol Content in Foods - Phenol-Explorer. http://phenol-explorer.eu/. Accessed 17 Mar 2023

  119. Shi J, Pan Z, McHugh TH et al (2008) Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT - Food Sci Technol. https://doi.org/10.1016/j.lwt.2008.01.003

    Article  Google Scholar 

  120. El-Beltagy A, Gamea GR, Essa AHA (2007) Solar drying characteristics of strawberry. J Food Eng 78:456–464. https://doi.org/10.1016/j.jfoodeng.2005.10.015

    Article  Google Scholar 

  121. Mulas M, Fadda A, Angioni A (2013) Effect of maturation and cold storage on the organic acid composition of myrtle fruits. J Sci Food Agric 93:37–44. https://doi.org/10.1002/jsfa.5724

    Article  CAS  PubMed  Google Scholar 

  122. Pinto L, Palma A, Cefola M et al (2020) Effect of modified atmosphere packaging (MAP) and gaseous ozone pre-packaging treatment on the physico-chemical, microbiological and sensory quality of small berry fruit. Food Packag Shelf Life 26:100573. https://doi.org/10.1016/j.fpsl.2020.100573

    Article  Google Scholar 

  123. Fadda A, Palma A, D’Aquino S, Mulas M (2017) Effects of Myrtle ( Myrtus communis L.) Fruit cold storage under modified atmosphere on liqueur quality. J Food Process Preserv 41:e12776. https://doi.org/10.1111/jfpp.12776

    Article  CAS  Google Scholar 

  124. Lone SA, Raghunathan S, Davoodbasha M et al (2019) An investigation on the sterilization of berry fruit using ozone: an option to preservation and long-term storage. Biocatal Agric Biotechnol 20:101212. https://doi.org/10.1016/j.bcab.2019.101212

    Article  Google Scholar 

  125. Kiurchev S, Verkholantseva V, Yeremenko O, Al-Nadzhar F (2020) Research and changes in berries using technology of freezing during storage

  126. Michalczyk M, Macura R, Matuszak I (2009) The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. J Food Process Preserv 33:11–21. https://doi.org/10.1111/j.1745-4549.2008.00232.x

    Article  CAS  Google Scholar 

  127. González E, de Ancos B, Cano P (2002) Preservation of raspberry fruits by freezing: physical, physico-chemical and sensory aspects. Eur Food Res Technol 215:497–503. https://doi.org/10.1007/s00217-002-0600-4

    Article  CAS  Google Scholar 

  128. Vicente AR, Costa ML, Martínez GA et al (2005) Effect of heat treatments on cell wall degradation and softening in strawberry fruit. Postharvest Biol Technol 38:213–222. https://doi.org/10.1016/j.postharvbio.2005.06.005

    Article  CAS  Google Scholar 

  129. Mladenova RB, Aleksieva KI, Nacheva IB (2019) Effect of gamma irradiation on antiradical activity of goji berry fruits (Lycium barbarum) evaluated by EPR spectroscopy. J Radioanal Nucl Chem 320:569–575. https://doi.org/10.1007/s10967-019-06520-x

    Article  CAS  Google Scholar 

  130. Wang C, Meng X (2016) Effect of 60Co γ-irradiation on storage quality and cell wall ultra-structure of blueberry fruit during cold storage. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2016.09.010

    Article  Google Scholar 

  131. Cabo Verde S, Trigo MJ, Sousa MB et al (2013) Effects of gamma radiation on raspberries: Safety and quality issues. J Toxicol Environ Heal - Part A Curr Issues 76:291–303. https://doi.org/10.1080/15287394.2013.757256

    Article  CAS  Google Scholar 

  132. Mašić S, Vujčić I (2021) Effect of gamma irradiation on microbiological and nutritional properties of the freeze-dried berries. Nukleonika 66:221–225. https://doi.org/10.2478/nuka-2021-0032

    Article  CAS  Google Scholar 

  133. Rodrigues FT, Ramos Koike AC, Galo da Silva P et al (2021) Effects of electron beam irradiation on the bioactive components of goji-berry. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2020.109144

    Article  Google Scholar 

  134. Nambeesan SU, Doyle JW, Capps HD et al (2018) Effect of electronic cold-pasteurizationTM (ECPTM) on fruit quality and postharvest diseases during blueberry storage. Horticulturae. https://doi.org/10.3390/horticulturae4030025

    Article  Google Scholar 

  135. Elias MI, Madureira J, Santos PMP et al (2020) Preservation treatment of fresh raspberries by e-beam irradiation. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2020.102487

    Article  Google Scholar 

  136. Coïsson JD, Travaglia F, Piana G et al (2005) Euterpe oleracea juice as a functional pigment for yogurt. Food Res Int. https://doi.org/10.1016/j.foodres.2005.03.009

    Article  Google Scholar 

  137. Citta A, Folda A, Scalcon V et al (2017) Oxidative changes in lipids, proteins, and antioxidants in yogurt during the shelf life. Food Sci Nutr 5:1079–1087. https://doi.org/10.1002/fsn3.493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Terpou A, Papadaki A, Bosnea L et al (2019) Novel frozen yogurt production fortified with sea buckthorn berries and probiotics. LWT 105:242–249. https://doi.org/10.1016/j.lwt.2019.02.024

    Article  CAS  Google Scholar 

  139. Sun-Waterhouse D, Zhou J, Wadhwa SS (2013) Drinking yoghurts with berry polyphenols added before and after fermentation. Food Control 32:450–460. https://doi.org/10.1016/j.foodcont.2013.01.011

    Article  CAS  Google Scholar 

  140. Freitas-Sá DDGC, de Souza RC, de Araujo MCP et al (2018) Effect of jabuticaba (Myrciaria jaboticaba (Vell) O. Berg) and jamelão (Syzygium cumini (L.) Skeels) peel powders as colorants on color-flavor congruence and acceptability of yogurts. LWT 96:215–221. https://doi.org/10.1016/j.lwt.2018.05.024

    Article  CAS  Google Scholar 

  141. Karaaslan M, Ozden M, Vardin H, Turkoglu H (2011) Phenolic fortification of yogurt using grape and callus extracts. LWT - Food Sci Technol 44:1065–1072. https://doi.org/10.1016/j.lwt.2010.12.009

    Article  CAS  Google Scholar 

  142. Rotar AM, Vdonar DC, Bunghez F et al (2015) Effect of goji berries and honey on lactic acid bacteria viability and shelf life stability of yoghurt. Not Bot Horti Agrobot Cluj-Napoca. https://doi.org/10.15835/nbha4319814

    Article  Google Scholar 

  143. Sandulachi E, Cojocari D, Balan G et al (2020) Antimicrobial effects of berries on listeria monocytogenes. Food Nutr Sci 11:873–886. https://doi.org/10.4236/fns.2020.119061

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support to the Bilateral Project funded Portugal-Tunisia and Ministry of Higher Education and Scientific Research, Tunisia “Conventional and non-conventional strawberries processing: effects on product quality, safety, antioxidants, and anti-diabetic potential, 2019-2021”, C2TN (UID/Multi/04349/2020) and J. Madureira (SFRH/BD/136506/2018). The work was also developed in the scope of the Coordinated Research Project D61025 “Innovating Radiation Processing of Food with Low Energy Beams from Machine Sources” financed by the International Atomic Energy Agency (IAEA). The authors are also grateful to University of Carthage Tunisia for the national funding to S. Barkaoui (2018-PFE-194), (2019-BALT-887), (2020-BALT-576) and (2021-BALT-1272).

Funding

International Atomic Energy Agency,Coordinated Research Project D61025,Fundação para a Ciência e a Tecnologia,Bilateral Project Portugal-Tunisia,SFRH/BD/136506/2018,UID/Multi/04349/2020,University of Carthage,2018-PFE-194,2019-BALT-887,2020-BALT-576,2021-BALT-1272

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Cabo Verde.

Ethics declarations

Conflicts of interest

The authors report there are no competing interests to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barkaoui, S., Madureira, J., Boudhrioua, N. et al. Berries: effects on health, preservation methods, and uses in functional foods: a review. Eur Food Res Technol 249, 1689–1715 (2023). https://doi.org/10.1007/s00217-023-04257-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-023-04257-2

Keywords

Navigation