Skip to main content

Advertisement

Log in

A Random Matrix Decimation Procedure Relating β = 2/(r + 1) to β =  2(r + 1)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Classical random matrix ensembles with orthogonal symmetry have the property that the joint distribution of every second eigenvalue is equal to that of a classical random matrix ensemble with symplectic symmetry. These results are shown to be the case r = 1 of a family of inter-relations between eigenvalue probability density functions for generalizations of the classical random matrix ensembles referred to as β-ensembles. The inter-relations give that the joint distribution of every (r + 1)st eigenvalue in certain β-ensembles with β  =  2/(r + 1) is equal to that of another β-ensemble with β  =  2(r + 1). The proof requires generalizing a conditional probability density function due to Dixon and Anderson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson G.W.: A short proof of Selberg’s generalized beta formula. Forum Math. 3, 415–417 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker T.H., Forrester P.J.: The Calogero-Sutherland model and generalized classical polynomials. Commun. Math. Phys. 188, 175–216 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Dixon A.L.: Generalizations of Legendre’s formula \({k e' - (k - e) k' = {1 \over 2}\pi}\) . Proc. London Math. Soc. 3, 206–224 (1905)

    Article  Google Scholar 

  4. Dumitriu I., Edelman A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Dyson F.J.: The coulomb fluid and the fifth Painlevé transcendent. In: S.-T., Yau (eds) Chen Ning Yang., pp. 131. International Press, Cambridge MA (1995)

    Google Scholar 

  6. Dyson F.J., Mehta M.L.: Statistical theory of the energy levels of complex systems. IV. J. Math. Phys. 4, 701–712 (1963)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Edelman A., Sutton B.D.: From random matrices to stochastic operators. J. Stat. Phys. 127(6), 1121–1166 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. Fogler M., Shklovskii B.I.: The probability of an eigenvalue fluctuation in an interval of a random matrix spectrum. Phys. Rev. Lett. 74, 3312 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Forrester, P.J.: Log-gases and Random Matrices. Available at http://www.ms.unimelb.edu.au/~matpjf/matpjf.html

  10. Forrester P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Forrester P.J., Rains E.M.: Inter-relationships between orthogonal, unitary and symplectic matrix ensembles. In: P.M., Bleher, A.R., Its (eds) Random matrix models and their applications, Volume 40 of Mathematical Sciences Research Institute Publications, pp. 171–208. Cambridge:Cambridge University Press, United Kingdom (2001)

  12. Forrester P.J., Rains E.M.: Interpretations of some parameter dependent generalizations of classical matrix ensembles. Probab. Theory Relat. Fields 131, 1–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Forrester P.J., Rains E.M.: Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices. Int. Math. Res. Not. 2006, 48306 (2006)

    MathSciNet  Google Scholar 

  14. Forrester, P.J., Warnaar, S.O.: The importance of the Selberg integral. http://arXiv./org/abs/0710.3981v1[math.CA], 2007

  15. Gunson J.: Proof of a conjecture of Dyson in the statistical theory of energy levels. J. Math. Phys. 4, 752–753 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  16. Killip, R., Stoiciu, M.: Eigenvalue statistics for CMV matrices: from Poisson to clock via circular beta ensembles. http://arXiv.org/list/math-ph/0608002, 2006

  17. Okounkov A.: Binomial formula for Macdonald polynomials. Math. Res. Lett. 4, 533–553 (1997)

    MATH  MathSciNet  Google Scholar 

  18. Rains, E.M.: Limits of elliptic hypergeometric integrals. http://arXiv.org/list/math.CA/0607093, 2006

  19. Ramirez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. http://arXiv.org/list/060733[math.PR], 2006

  20. Selberg A.: Bemerkninger om et multipelt integral. Norsk. Mat. Tidsskr. 24, 71–78 (1944)

    MathSciNet  Google Scholar 

  21. Valko, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. http://arXiv.org/abs/0712.2000v1[math.PR], 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Forrester.

Additional information

Communicated by P. Sarnak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrester, P.J. A Random Matrix Decimation Procedure Relating β = 2/(r + 1) to β =  2(r + 1). Commun. Math. Phys. 285, 653–672 (2009). https://doi.org/10.1007/s00220-008-0616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0616-0

Keywords

Navigation