Skip to main content
Log in

A Fuchsian Matrix Differential Equation for Selberg Correlation Integrals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We characterize averages of \({\prod_{l=1}^N|x - t_l|^{\alpha - 1}}\) with respect to the Selberg density, further constrained so that \({t_l \in [0,x] (l=1,\dots,q)}\) and \({t_l \in [x,1] (l=q+1,\dots,N)}\) , in terms of a basis of solutions of a particular Fuchsian matrix differential equation. By making use of the Dotsenko-Fateev integrals, the explicit form of the connection matrix from the Frobenius type power series basis to this basis is calculated, thus allowing us to explicitly compute coefficients in the power series expansion of the averages. From these we are able to compute power series for the marginal distributions of the \({t_j (j=1,\dots,N)}\) . In the case q = 0 and α < 1 we compute the explicit leading order term in the \({x \to 0}\) asymptotic expansion, which is of interest to the study of an effect known as singularity dominated strong fluctuations. In the case q = 0 and \({\alpha \in \mathbb{Z}^+}\) , and with the absolute values removed, the average is a polynomial, and we demonstrate that its zeros are highly structured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. André Y.: Différentielles non commutatives et théorie de Galois différentielle et aux différences. Ann. Sci ENS 34, 685–739 (2001)

    MATH  Google Scholar 

  2. Aomoto K.: Jacobi polynomials associated with Selberg’s integral. SIAM J. Math. Anal. 18, 545–549 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker T.H., Forrester P.J.: The Calogero-Sutherland model and generalized classical polynomials. Commun. Math. Phys. 188, 175–216 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Berry M.V.: Focusing and twinkling: critical exponents from catastrophes in non-Gaussian random short waves. J. Phys. A 10, 2061–2081 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  5. Berry M.V.: Universal power-law tails for singularity-dominated strong fluctuations. J. Phys. A 15, 2735–2749 (1977)

    Article  ADS  Google Scholar 

  6. Berry M.V., Keating J.P.: Clusters of near degenerate levels dominate negative moments of spectral determinants. J. Phys. A 35, L1–L6 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Berry M.V., Keating J.P., Schomerus H.: Universal twinkling exponents for spectral fluctuations associated with mixed chaology. Proc. R. Soc. A 456, 1659–1668 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bostan, A., Boukraa, S., Guttmann, A.J., Hassani, S., Jensen, I., Maillard, J.M., Zenine, N.: High order Fuchsian equations for the square lattice Ising model: \({\tilde{\chi}^{(5)}}\) . J. Phys. A 42, 275209 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Boukraa S., Hassani S., Maillard J.M., McCoy B.M., Weil J.-A., Zenine N.: Holonomy of the Ising model form factors. J. Phys. A 40, 75–111 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Boukraa S., Hassani S., Maillard J.M., McCoy B.M., Weil J.-A., Zenine N.: Painlevé versus Fuchs. J. Phys. A 39, 12245–12263 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Clarkson P.A.: The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44, 5350–5374 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Clarkson P.A.: The third Painlevé equation and associated special polynomials. J. Phys. A 36, 9507–9532 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Clarkson P.A.: Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations. Comp. Meth. Func. Theory 6, 329–401 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Clarkson P.A.: Vortices and polynomials. Stud. Applied Math. 123, 37–62 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis A.W.: On the marginal distributions of the latent roots of the multivariable beta matrix. Ann. Math. Stat. 43, 1664–1669 (1972)

    Article  MATH  Google Scholar 

  16. Desrosiers P.: Duality in random matrix ensembles for all β. Nucl. Phys. B 817, 224–251 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Dotsenko V.S., Fateev V.A.: Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge C ≤ 1. Nucl. Phys. B 251, 691–734 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  18. Edelman A., Sutton B.D.: The beta-Jacobi matrix model, the CS decomposition, and generalized singular value problems. Found. Comput. Math. 8, 259–285 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Etingof, P.I., Frenkel, I.B., Kirillov, A.A. Jr.: Lectures on representation theory and Knizhnik-Zamolodchikov equations. Math. Surv. Monographs 58, Amer. Math. Soc., Providence, RI: 1998

  20. Forrester P.J.: Recurrence equations for the computation of correlations in the 1/r 2 quantum many body system. J. Stat. Phys. 72, 39–50 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Forrester P.J.: A random matrix decimation procedure relating β = 2/(r + 1) to β = 2(r + 1). Commun. Math. Phys. 285, 653–672 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Forrester P.J.: Log-gases and random matrices. University Press, Princeton, NJ: Princeton (2010)

    MATH  Google Scholar 

  23. Forrester P.J., Ito M.: Difference system for Selberg correlation integrals. J. Phys. A 43, 175202 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. Forrester P.J., Keating J.P.: Singularity dominated strong fluctuations for some random matrix averages. Commun. Math. Phys. 250, 119–131 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Forrester, P.J., Rains, E.M.: Inter-relationships between orthogonal, unitary and symplectic matrix ensembles. In: Random matrix models and their applications, Bleher, P.M., Its, A.R., eds., Mathematical Sciences Research Institute Publications, Vol. 40, Cambridge: Cambridge University Press, 2001, pp. 171–208

  26. Forrester P.J., Rains E.M.: Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices. Int. Math. Res. Not. 2006, 48306 (2006)

    MathSciNet  Google Scholar 

  27. Forrester P.J., Warnaar S.O.: The importance of the Selberg integral. Bull. Am. Math. Soc. 45, 489–534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Forrester P.J., Witte N.S.: Application of the τ-function theory of Painlevé equations to random matrices: PVI, the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, 29–114 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Fyodorov Y.V., Keating J.P.: Negative moments of characteristic polynomials of GOE matrices and singularity-dominated strong fluctuations. J. Phys. A 36, 4035–4046 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Keating J.P., Prado S.D.: Orbit bifurcations and the scarring of wave functions. Proc. R. Soc. A 457, 1855–1872 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Killip R., Nenciu I.: Matrix models for circular ensembles. Int. Math. Res. Not. 50, 2665–2701 (2004)

    Article  MathSciNet  Google Scholar 

  32. Matsumoto, S.: Averages of ratios of characteristic polynomials in circular β-ensembles and super-Jack polynomials. http://arXiv.org/abs/0805.3573.v2 [math.PR], 2008

  33. Mimachi, K.: The connection problem associated with Selberg type integral and the q-Racah polynomials. http://arXiv.org/abs/0710.2167v1 [math-ph], 2007

  34. Varchenko A.N.: The Euler beta-function, the Vandermonde determinant, the Legendre equation, and critical values of linear functions on a configuration of hyperplanes. I. Math. USSR 35, 543–571 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Varchenko A.N.: The Euler beta-function, the Vandermonde determinant, the Legendre equation, and critical values of linear functions on a configuration of hyperplanes. II. Math. USSR 36, 155–167 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Varchenko, A.N.: Special functions, KZ type equations, and representation theory. CBMS Reg. Con. Series 98, Amer. Math. Soc., Providence, RI: 2003

  37. Walter W.:: Ordinatry differential equations. Springer-Verlag, New York (1998)

    Book  Google Scholar 

  38. Yan Z.: A class of generalized hypergeometric functions in several variables. Canad. J. Math. 44, 1317–1338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zenine N., Boukraa S., Hassani S., Maillard J.M.: The Fuchsian differential equation of the square lattice Ising model χ (3) susceptibility. J. Phys. A 37, 9651–9668 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Zenine N., Boukraa S., Hassani S., Maillard J.M.: Ising model susceptibility: the Fuchsian differential equation for χ (4) and its factorization properties. J. Phys. A 38, 4149–4173 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Forrester.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forrester, P.J., Rains, E.M. A Fuchsian Matrix Differential Equation for Selberg Correlation Integrals. Commun. Math. Phys. 309, 771–792 (2012). https://doi.org/10.1007/s00220-011-1305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-011-1305-y

Keywords

Navigation