Skip to main content
Log in

Approximation and Equidistribution of Phase Shifts: Spherical Symmetry

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Consider a semiclassical Hamiltonian

$$H_{V, h} := h^{2} \Delta + V - E,$$

where h > 0 is a semiclassical parameter, Δ is the positive Laplacian on \({\mathbb{R}^{d}, V}\) is a smooth, compactly supported central potential function and E > 0 is an energy level. In this setting the scattering matrix S h (E) is a unitary operator on \({L^2(\mathbb{S}^{d-1})}\), hence with spectrum lying on the unit circle; moreover, the spectrum is discrete except at 1.

We show under certain additional assumptions on the potential that the eigenvalues of S h (E) can be divided into two classes: a finite number \({\sim c_d (R\sqrt{E}/h)^{d-1}}\), as \({h \to 0}\), where B(0, R) is the convex hull of the support of the potential, that equidistribute around the unit circle, and the remainder that are all very close to 1. Semiclassically, these are related to the rays that meet the support of, and hence are scattered by, the potential, and those that do not meet the support of the potential, respectively.

A similar property is shown for the obstacle problem in the case that the obstacle is the ball of radius R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I. A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Volume 55 of National Bureau of Standards Applied Mathematics Series. Washington, D.C.: Superintendent of Documents, U.S. Government Printing Office, 1964

  2. Alexandrova I.: Structure of the semi-classical amplitude for general scattering relations. Commun. Partial Differ. Equ. 30(10–12), 1505–1535 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Birman M.S., Yafaev D.R.: Asymptotics of the spectrum of the s-matrix in potential scattering. Sov. Phys. Dokl. 25(12), 989–990 (1980)

    ADS  Google Scholar 

  4. Birman M.S., Yafaev D.R.: Asymptotic behavior of limit phases for scattering by potentials without spherical symmetry. Theor. Math. Phys. 51(1), 344–350 (1982)

    Article  MathSciNet  Google Scholar 

  5. Birman M.S., Yafaev D.R.: Asymptotic behaviour of the spectrum of the scattering matrix. J. Sov. Math. 25, 793–814 (1984)

    Article  MATH  Google Scholar 

  6. Birman M.S., Yafaev D.R.: Spectral properties of the scattering matrix. St Petersburg Math. J. 4(6), 1055–1079 (1993)

    MathSciNet  Google Scholar 

  7. Bulger, D., Pushnitski, A.: The spectral density of the scattering matrix for high energies. Commun. Math. Phys. 316(3), 693–704 (2012)

    Google Scholar 

  8. Doron E., Smilansky U.: Semiclassical quantization of chaotic billiards: a scattering theory approach. Nonlinearity 5(5), 1055–1084 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Guillemin, V.: Sojourn times and asymptotic properties of the scattering matrix. In: Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis (Kyoto Univ., Kyoto, 1976), Vol. 12, 1976/77 supplement. pp. 69–88

  10. Hassell A., Wunsch J.: The semiclassical resolvent and the propagator for non-trapping scattering metrics. Adv. Math. 217(2), 586–682 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hörmander L.: Fourier integral operators. I. Acta Math. 127(1-2), 79–183 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hörmander, L.: The analysis of linear partial differential operators. I. Classics in Mathematics. Berlin: Springer, 1983

  13. Hörmander, L.: The analysis of linear partial differential operators. III. Classics in Mathematics. Berlin: Springer-Verlag, 2007. Reprint of the 1994 edition

  14. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. New York: Wiley-Interscience, 1974

  15. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics: Nonrelativistic Theory. Oxford: Pergamon Press, 1965

  16. Majda A.: High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering. Commun. Pure Appl. Math. 29(3), 261–291 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Melrose, R.: Geometric Scattering Theory. Cambridge: Cambridge University Press, 1995

  18. Melrose R., Zworski M.: Scattering metrics and geodesic flow at infinity. Invent. Math. 124(1–3), 389–436 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Newton, R.: Scattering Theory of Waves and Particles. New York: McGraw-Hill, 1965

  20. Petkov V., Zworski M.: Semi-classical estimates on the scattering determinant. Ann. H. Poincaré 2(4), 675–711 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. III. New York: Academic Press (Harcourt Brace Jovanovich Publishers), 1979

  22. Robert D., Tamura H.: Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits. Ann. Inst. Fourier (Grenoble) 39(1), 155–192 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sjöstrand J., Zworski M.: Complex scaling and the distribution of scattering poles. J. Am. Math. Soc. 4(4), 729–769 (1991)

    Article  MATH  Google Scholar 

  24. Sobolev A.V., Yafaev D.R.: Phase analysis in the problem of scattering by a radial potential. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 147, 155–178, 206 (1985)

    MATH  MathSciNet  Google Scholar 

  25. Yafaev, D.: Mathematical Scattering Theory: Analytic Theory. Providence, RI: American Mathematical Society, 2010

  26. Yafaev D.R.: On the asymptotics of scattering phases for the Schrödinger equation. Ann. Inst. H. Poincaré Phys. Théor. 53(3), 283–299 (1990)

    MATH  MathSciNet  Google Scholar 

  27. Zelditch S.: Index and dynamics of quantized contact transformations. Ann. Inst. Fourier (Grenoble) 47(1), 305–363 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zelditch S., Zworski M.: Spacing between phase shifts in a simple scattering problem. Commun. Math. Phys. 204(3), 709–729 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Gell-Redman.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datchev, K., Gell-Redman, J., Hassell, A. et al. Approximation and Equidistribution of Phase Shifts: Spherical Symmetry. Commun. Math. Phys. 326, 209–236 (2014). https://doi.org/10.1007/s00220-013-1841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1841-8

Keywords

Navigation