Skip to main content
Log in

On the Steady State Correlation Functions of Open Interacting Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We address the existence of steady state Green-Keldysh correlation functions of interacting fermions in mesoscopic systems for both the partitioning and partition-free scenarios. Under some spectral assumptions on the non-interacting model and for sufficiently small interaction strength, we show that the system evolves to a NESS which does not depend on the profile of the time-dependent coupling strength/bias. For the partitioned setting we also show that the steady state is independent of the initial state of the inner sample. Closed formulae for the NESS two-point correlation functions (Green-Keldysh functions), in the form of a convergent expansion, are derived. In the partitioning approach, we show that the 0th order term in the interaction strength of the charge current leads to the Landauer-Büttiker formula, while the 1st order correction contains the mean-field (Hartree–Fock) results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS Kyoto Univ. 9, 165–209 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  2. Araki H.: Relative entropy for states of von Neumann algebras II. Publ. RIMS Kyoto Univ. 13, 173–192 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avron J.E., Bachmann S., Graf G.M., Klich I.: Fredholm determinants and the statistics of charge transport. Commun. Math. Phys. 280, 807–829 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Araki H., Ho T.G.: Asymptotic time evolution of a partitioned infinite two-sided isotropic XY-chain. Proc. Steklov Inst. Math. 228, 191–204 (2000)

    MathSciNet  Google Scholar 

  5. Aschbacher, W., Jakšić, V., Pautrat, Y., and Pillet, C.-A: Topics in non-equilibrium quantum statistical mechanics. In: Open Quantum Systems III. Recent Developments. Attal, S., Joye, A., Pillet, C.-A. (eds.). Lecture Notes in Mathematics, Vol. 1882. Springer, Berlin, 2006

  6. Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free Fermions. J. Math. Phys. 48, 032101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aschbacher W., Pillet C.-A.: Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112, 1153–1175 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Aschbacher W., Spohn H.: A remark on the strict positivity of entropy production. Lett. Math. Phys. 75, 17–23 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Araki H., Wyss W.: Representations of canonical anticommutation relations. Helv. Phys. Acta 37, 139–159 (1964)

    MathSciNet  Google Scholar 

  10. Botvich D.D, Maassen H.: A Galton–Watson estimate for Dyson series. Ann. Henri Poincaré 10, 1141–1158 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Botvich D.D., Malyshev V.A.: Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas. Commun. Math. Phys. 91, 301–312 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Ben Sâad, R., Pillet, C.-A.: A geometric approach to the Landauer-Büttiker formula. Preprint (2013)

  13. Bratelli O., Robinson D.W.: Operator algebras and quantum statistical mechanics 1, Second Edition. Springer, New York (1997)

    Book  Google Scholar 

  14. Bratelli O., Robinson D.W.: Operator algebras and quantum statistical mechanics 2, Second Edition. Springer, New York (1997)

    Book  Google Scholar 

  15. Caroli C., Combescot R., Nozières P., Saint-James D.: Direct calculation of the tunneling current. J. Phys. C. Solid State Phys. 4, 916–929 (1971)

    Article  ADS  Google Scholar 

  16. Cini M.: Time-dependent approach to electron transport through junctions: general theory and simple applications. Phys. Rev. B. 22, 5887–5899 (1980)

    Article  ADS  Google Scholar 

  17. Cornean H.D., Duclos P., Nenciu G., Purice R.: Adiabatically switched-on electrical bias and the Landauer-Büttiker formula. J. Math. Phys. 49, 102106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cornean H.D., Duclos P., Purice R.: Adiabatic non-equilibrium steady states in the partition free approach. Ann. Henri Poincaré 13, 827–856 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Cornean H.D., Gianesello C., Zagrebnov V.: A partition-free approach to transient and steady-state charge currents. J. Phys. A. Math. Theor. 43, 474011 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Cornean H.D., Jensen A., Moldoveanu V.: A rigorous proof of the Landauer-Büttiker formula. J. Math. Phys. 46, 042106 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cornean H.D., Moldoveanu V.: On the cotunneling regime of interacting quantum dots. J. Phys. A. Math. Theor. 44, 305002 (2011)

    Article  MathSciNet  Google Scholar 

  22. Cornean H., Neidhardt H., Zagrebnov V.: The Effect of time-dependent coupling on non-equilibrium steady states. Ann. Henri Poincaré 10, 61–93 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Davies E.B.: Markovian master equations. Commun. Math. Phys. 39, 91–110 (1974)

    Article  ADS  MATH  Google Scholar 

  24. Davies E.B.: Markovian master equations. II. Math. Ann. 219, 147–158 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Davies E.B.: Markovian master equations. III. Ann. Inst. H. Poincaré, Sect. B 11, 265–273 (1975)

    MATH  Google Scholar 

  26. Dereziński J., Gérard C.: Mathematics of quantization and quantum fields. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  27. Dirren, S.: ETH diploma thesis winter 1998/99, chapter 5 (written under the supervision of J. Fröhlich and G.M. Graf)

  28. de Roeck, W., Kupiainen, A.: ‘Return to Equilibrium’ for weakly coupled quantum systems: a simple polymer expansion. Commun. Math. Phys. 305, 797–826 (2011)

    Google Scholar 

  29. de Roeck W., Maes C.: Steady state fluctuations of the dissipated heat for a quantum stochastic model. Rev. Math. Phys. 18, 619–654 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. de Roeck W.: Large deviation generating function for currents in the Pauli–Fierz model. Rev. Math. Phys. 21, 549–585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Dereziński, J., de Roeck, W., Maes, C.: Fluctuations of quantum currents and unravelings of master equations. J. Stat. Phys. 131, 341–356 (2008)

    Google Scholar 

  32. Esposito M., Harbola U., Mukamel S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Evans D.E.: Scattering in the CAR algebra. Commun. Math. Phys. 48, 23–30 (1976)

    Article  ADS  MATH  Google Scholar 

  34. Fröhlich, J., Merkli, M., Schwarz, S., Ueltschi, D.: Statistical mechanics of thermodynamic processes. In: Arafune, J., et al. (eds.). A Garden of Quanta (Essays in Honor of Hiroshi Ezawa). World Scientific, London, Singapore, Hong Kong (2003)

  35. Fröhlich J., Merkli M., Ueltschi D.: Dissipative transport: thermal contacts and tunneling junctions. Ann. Henri Poincaré 4, 897–945 (2004)

    Article  ADS  Google Scholar 

  36. Flindt C., Novotny T., Braggio A., Sassetti M., Jauho A.-P.: Counting statistics of non-Markovian quantum stochastic processes. Phys. Rev. Lett. 100, 150601 (2008)

    Article  ADS  Google Scholar 

  37. Flindt C., Novotny T., Braggio A., Jauho A.-P.: Counting statistics of transport through Coulomb blockade nanostructures: High-order cumulants and non-Markovian effects. Phys. Rev. B. 82, 155407 (2010)

    Article  ADS  Google Scholar 

  38. Hewson A.C.: The Kondo problem to heavy Fermions. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  39. Hepp K.: Rigorous results on the s–d model of the Kondo effect. Solid State Commun. 8, 2087–2090 (1970)

    Article  ADS  Google Scholar 

  40. Hepp, K.: Results and problems in irreversible statistical mechanics of open systems. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics, January 23–29, 1975, Kyoto University, Kyoto, Japan. Lecture Notes in Physics 39, Springer, Berlin, (1975)

  41. Imry Y.: Introduction to Mesoscopic Physics. Oxford University Press, Oxford (1997)

    Google Scholar 

  42. Jensen A., Kato T.: Spectral properties of Schrödinger operators and time-decay of the wave functions. Duke Math. J. 46, 583–611 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  43. Jakšić V., Ogata Y., Pillet C.-A.: The Green-Kubo formula and the Onsager reciprocity relations in quantum statistical mechanics. Commun. Math. Phys. 265, 721–738 (2006)

    Article  ADS  MATH  Google Scholar 

  44. Jakšić V., Ogata Y., Pillet C.-A.: Linear response theory for thermally driven quantum open systems. J. Stat. Phys. 123, 547–569 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Jakšić V., Ogata Y., Pillet C.-A.: The Green-Kubo formula for locally interacting fermionic open systems. Ann. Henri Poincaré 8, 1013–1036 (2007)

    Article  ADS  MATH  Google Scholar 

  46. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics – an introduction. In: Fröhlich J., Salmhofer M., de Roeck W., Mastropietro V., Cugliandolo L.F. (eds.) Quantum theory from small to large scales. Oxford University Press, Oxford, 2012

  47. Jakšić V., Ogata Y., Pillet C.-A., Seiringer R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys. 24, 1230002 (2012)

    Article  MathSciNet  Google Scholar 

  48. Jakšić V., Pillet C.-A.: Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs. Commun. Math. Phys. 226, 131–162 (2002)

    Article  ADS  MATH  Google Scholar 

  49. Jakšić V., Pillet C.-A.: Mathematical theory of non-equilibrium quantum statistical mechanics. J. Stat. Phys. 108, 787–829 (2002)

    Article  ADS  MATH  Google Scholar 

  50. Jakšić V., Pillet C.-A.: On entropy production in quantum statistical mechanics. Commun. Math. Phys. 217, 285–293 (2001)

    Article  ADS  MATH  Google Scholar 

  51. Jakšić V., Pillet C.-A.: A note on the entropy production formula. Contemp. Math. 327, 175–180 (2003)

    Article  Google Scholar 

  52. Jakšić, V., Pillet, C.-A.: On the strict positivity of entropy production. In: Germinet, F., Hislop, P.D. (eds.) Adventures in Mathematical Physics-transport and Spectral Problems in Quantum Mechanics: a Conference in Honor of Jean-Michel Combes. Contemp. Math., Vol. 447, 2007 pp. 153–163

  53. Jakšić V., Pautrat Y., Pillet C.-A.: Central limit theorem for locally interacting Fermi gas. Commun. Math. Phys. 285, 175–217 (2009)

    Article  ADS  MATH  Google Scholar 

  54. Jauho A.-P., Wingreen N.S., Meir Y.: Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528–5544 (1994)

    Article  ADS  Google Scholar 

  55. Kashcheyevs V., Aharony A., Entin-Wohlman O.: Applicability of the equations-of-motion technique for quantum dots. Phys. Rev. B. 73, 125338 (2006)

    Article  ADS  Google Scholar 

  56. Keldysh, L.V.: Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz., Vol. 47, 1515–1527 (1964). English translation in Sov. Phys. JETP, Vol. 20, 1018–1026 (1965)

  57. Kurth S., Stefanucci G., Khosravi E., Verdozzi C., Gross E.K.U.: Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory. Phys. Rev. Lett. 104, 236801 (2010)

    Article  ADS  Google Scholar 

  58. Levitov L.S., Lesovik G.B.: Charge distribution in quantum shot noise. JETP Lett. 58, 230–235 (1993)

    ADS  Google Scholar 

  59. Levitov L.S., Lee H., Lesovik G.B.: Electron counting statistics and coherent states of electric current. J. Math. Phys. 37, 4845–4866 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  60. Lebowitz J.L., Spohn H.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978)

    Google Scholar 

  61. Moldoveanu V., Cornean H.D., Pillet C.-A.: Non-equilibrium steady-states for interacting open systems: exact results. Phys. Rev. B. 84, 075464 (2011)

    Article  ADS  Google Scholar 

  62. Merkli M., Mück M., Sigal I.M.: Theory of non-equilibrium stationary states as a theory of resonances. Ann. Henri Poincaré 8, 1539–1593 (2007)

    Article  ADS  MATH  Google Scholar 

  63. Myohanen, P., Stan, A., Stefanucci, G., van Leeuwen, R.: Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime. Phys. Rev. B 80, 115107 (2009)

    Google Scholar 

  64. Meir Y., Wingreen N.S.: Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 68, 2512–2515 (1992)

    Article  ADS  Google Scholar 

  65. Nenciu G.: Independent electrons model for open quantum systems: Landauer-Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  66. Narnhofer H., Thirring W.: Adiabatic theorem in quantum statistical mechanics. Phys. Rev. A 26, 3646–3652 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  67. Pearson, D.B.: Quantum scattering and spectral theory. Academic Press, London, 1988

  68. Pillet, C.-A.: Quantum dynamical systems. In: Attal, S., Joye, A., Pillet, C.-A. (eds.) Open quantum systems I. Lecture Notes in Mathematics, Vol. 1880, Springer Verlag, Berlin, 2006

  69. van Friesen, M.P., Verdozzi, V., Almbladh, C.-O.: Kadanoff-Baym dynamics of Hubbard clusters: performance of many-body schemes, correlation-induced damping and multiple steady and quasi-steady states. Phys. Rev. B 82, 155108 (2010)

    Google Scholar 

  70. Pustilnik M., Glazman L.: Kondo effect in quantum dots. J. Phys. Condens. Matter 16, R513–R537 (2004)

    Article  ADS  Google Scholar 

  71. Reed, M., Simon, B.: Methods of modern Mathematical Physics. II: Fourier analysis, self-adjointness. Academic Press, New York, 1975

  72. Reed M., Simon B.: Methods of modern Mathematical Physics. III: scattering theory. Academic Press, New York (1979)

    MATH  Google Scholar 

  73. Robinson D.W.: Return to equilibrium. Commun. Math. Phys. 31, 171–189 (1973)

    Article  ADS  MATH  Google Scholar 

  74. Ruelle D.: Natural nonequilibrium states in quantum statistical mechanics. J. Stat. Phys. 98, 57–75 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  75. Ruelle D.: Entropy production in quantum spin systems. Commun. Math. Phys. 224, 3–16 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  76. Spohn H.: An algebraic condition for the approach to equilibrium of an open N-level system. Lett. Math. Phys. 2, 33–38 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  77. Thygesen K.S., Rubio A.: Conserving GW scheme for nonequilibrium quantum transport in molecular contacts. Phys. Rev. B 77, 115333 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-A. Pillet.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornean, H.D., Moldoveanu, V. & Pillet, CA. On the Steady State Correlation Functions of Open Interacting Systems. Commun. Math. Phys. 331, 261–295 (2014). https://doi.org/10.1007/s00220-014-1925-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1925-0

Keywords

Navigation