Skip to main content
Log in

Global Results for Linear Waves on Expanding Kerr and Schwarzschild de Sitter Cosmologies

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this global study of solutions to the linear wave equation on Schwarzschild de Sitter spacetimes we attend to the cosmological region of spacetime which is bounded in the past by cosmological horizons and to the future by a spacelike hypersurface at infinity. We prove an energy estimate capturing the expansion of that region, which combined with earlier results for the static region, yields a global boundedness result for linear waves. It asserts that a general finite energy solution to the global initial value problem has a limit on the future boundary at infinity that can be viewed as a function on the standard cylinder with finite energy, and that, moreover, any decay along the cosmological horizon is inherited along the future boundary. In particular, we exhibit an explicit nonvanishing quantity on the future boundary of the spacetime consistent with our expectations for the nonlinear stability problem. Our results apply to a large class of expanding cosmologies near the Schwarzschild de Sitter geometry, in particular subextremal Kerr de Sitter spacetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alho, A., Mena, F., Valiente Kroon, J.A.: The Einstein–Friedrich-nonlinear scalar field system and the stability of scalar field cosmologies. arXiv:1006.3778

  2. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations. Commun. Math. Phys. 307, 17–63 (2011). Also available online at http://arxiv.org/abs/1110.2007

  3. Baskin, D.: A parametrix for the fundamental solution of the Klein–Gordon equation on asymptotically de Sitter spaces. J. Funct. Anal. 259(7), 1673–1719 (2010)

  4. Baskin, D.: A Strichartz estimate for de Sitter space. In: The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, Proc. Centre Math. Appl. Austral. Nat. Univ., vol. 44. Australian National University, Canberra, pp. 97–104 (2010)

  5. Baskin, D.: Strichartz estimates on asymptotically de Sitter spaces. Ann. Henri Poincaré 14(2), 221–252 (2013)

  6. Bony, J.-F., Häfner, D.: Decay and non-decay of the local energy for the wave equation on the de Sitter–Schwarzschild metric. Commun. Math. Phys. 282(3), 697–719 (2008)

  7. Carter, B.: Black hole equilibrium states. In: DeWitt, B.S., DeWitt, C. (eds.) Black Holes. Les Houches Lectures, pp. 59–214. Gordon and Breach, New York (1972)

  8. Christodoulou D.: Self-gravitating relativistic fluids: a two-phase model. Arch. Ration. Mech. Anal. 130, 343–400 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Christodoulou, D.: Mathematical Problems of General Relativity. Zurich Lectures in Advanced Mathematics. European Mathematical Society, Zürich (2008)

  10. Christodoulou, D.: The Formation of Black Holes in General Relativity. EMS Monographs in Mathematics. European Mathematical Society, Zürich (2009)

  11. Dafermos M.: The interior of charged black holes and the problem of uniqueness in general relativity. Commun. Pure Appl. Math. LVIII, 0445–0504 (2005)

    Article  MathSciNet  Google Scholar 

  12. Dafermos M.: The black hole stability problem. Oberwolfach Rep. 6, 2589–2594 (2009)

    Google Scholar 

  13. Dafermos, M., Rodnianski, I.: The Wave Equation on Schwarzschild–de Sitter spacetimes. arXiv:0709.2766v1 (2007)

  14. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: Clay Mathematics Proceedings 17, American Mathematics Society, Providence, pp. 97–205 (2013). Available online http://arxiv.org/abs/0811.0354

  15. Dafermos M., Rodnianski I.: The red-shift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. LXII, 0859–0919 (2009)

    Article  MathSciNet  Google Scholar 

  16. Dafermos, M., Rodnianski, I.: The black hole stability problem for linear scalar perturbations. In: Damour, T., Jantzen, R., Ruffini, R. (eds.) Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity, pp. 132–189. World Scientific, Singapore (2011). Related article available online at http://www.arxiv.org/abs/1010.5137

  17. Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating kerr backgrounds. Inventiones mathematicae 185(3), 467–550 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Datchev K., Vasy A.: Semiclassical resolvent estimates at trapped sets. Ann. Inst. Fourier (Grenoble) 62(6), 2379–2384 (2013)

    Article  MathSciNet  Google Scholar 

  19. Dyatlov, S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. 18(5), 1023–1035 (2011)

  20. Dyatlov, S.: Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole. Commun. Math. Phys. 306(1), 119–163 (2011)

  21. Friedrich, H.: On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Commun. Math. Phys. 107(4), 587–609 (1986)

  22. Gibbons Gary W., Hawking Stephen W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15(10), 2738–2751 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1973)

  24. Heusler, M.: Black Hole Uniqueness Theorems. Cambridge Lecture Notes in Physics. Cambridge University Press, Cambridge (1996)

  25. Hawking, S.W., Hunter, C.J., Taylor-Robinson, M.M.: Rotation and the AdS-CFT correspondence. Phys. Rev. D 59(064005) 1–13 (1999)

  26. Henneaux, M., Teitelboim, C.: Asymptotically anti-de Sitter spaces. Commun. Math. Phys. 98(3), 391–424 (1985)

  27. Kottler, F.: Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie. Ann. Phys. 56, 401–462 (1918)

  28. Lake K., Roeder R.C.: Effects of a nonvanishing cosmological constant on the spherically symmetric vacuum manifold. Phys. Rev. D 15(12), 3513–3519 (1977)

    Article  ADS  Google Scholar 

  29. Luk, J.: Improved decay for solutions to the linear wave equation on a Schwarzschild black hole. Ann. Henri Poincaré 11, 805–880 (2010)

  30. LÜbbe C., Kroon J.A.V.: A conformal approach for the analysis of the non-linear stability of radiation cosmologies. Ann. Phys. 328, 1–25 (2013)

    Article  ADS  MATH  Google Scholar 

  31. Mazzeo Rafe R., Melrose Richard B.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2), 260–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Melrose, R., Sá Barreto, A., Vasy, A.: Asymptotics of solutions to the wave equation on de Sitter–Schwarzschild space. Commun. Part. Differ. Equ. 39(3), 512–529 (2014)

  33. Nussbaumer H., Bieri L.: Discovering the Expanding Universe. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  34. Ringström, H.: Future stability of the Einstein-non-linear scalar field system. Invent. Math. 173, 123–208 (2008)

  35. Rodnianski, I., Speck, J.: The stability of the irrotational Euler–Einstein system with a positive cosmological constant. arXiv:0911.5501v2 (2009)

  36. Schlue, V.: Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. Ph.D. thesis, University of Cambridge (2012)

  37. Speck J.: The stabilizing effect of spacetime expansion on relativistic fluids with sharp results for the radiation equation of state. Arch Ration. Mech. Anal. 210, 535–579 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sá Baretto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4, 103–121 (1997)

    Article  MathSciNet  Google Scholar 

  39. Vasy, A.: The wave equation on asymptotically de Sitter-like spaces. Adv. Math. 223(1), 49–97 (2010)

  40. Vasy, A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces (with an appendix by Semyon Dyatlov). Invert. Math. 194, 381–513 (2013)

  41. Weyl, H.: Über die statischen kugelsymmetrischen Lösungen von Einsteins kosmologischen Gravitationsgleichungen. Phys. Z. 20, 31–34 (1919)

  42. Wunsch J., Zworski M.: Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré 12(7), 1349–1385 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schlue.

Additional information

Communicated by P. T. Chruściel

V. Schlue would like to thank the UK Engineering and Physical Sciences Research Council, the Cambridge European Trust, and the European Research Council for their financial support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlue, V. Global Results for Linear Waves on Expanding Kerr and Schwarzschild de Sitter Cosmologies. Commun. Math. Phys. 334, 977–1023 (2015). https://doi.org/10.1007/s00220-014-2154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2154-2

Keywords

Navigation