Skip to main content
Log in

The Feynman Propagator on Perturbations of Minkowski Space

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we analyze the Feynman wave equation on Lorentzian scattering spaces. We prove that the Feynman propagator exists as a map between certain Banach spaces defined by decay and microlocal Sobolev regularity properties. We go on to show that certain nonlinear wave equations arising in QFT are well-posed for small data in the Feynman setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baskin, D., Vasy, A., Wunsch, J.: Asymptotics of scalar waves on long-range asymptotically Minkowski spaces (in preparation)

  2. Baskin D., Vasy A., Wunsch J.: Asymptotics of radiation fields in asymptotically Minkowski space. Am. J. Math. 137(5), 1293–1364 (2015)

    Article  MathSciNet  Google Scholar 

  3. Bieri, L.: Part I: solutions of the Einstein vacuum equations. In: Extensions of the stability theorem of the Minkowski space in general relativity. In: AMS/IP Stud. Adv. Math., vol. 45, pp. 1–295. American Mathematical Society, Providence (2009)

  4. Bieri L., Zipser N.: Extensions of the stability theorem of the Minkowski space in general relativity. AMS/IP Studies in Advanced Mathematics, vol. 45. American Mathematical Society, Providence (2009)

    Google Scholar 

  5. Brunetti R., Fredenhagen K., Köhler M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180(3), 633–652 (1996)

    Article  ADS  MATH  Google Scholar 

  6. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208(3), 623–661 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Carron G., Coulhon T., Hassell A.: Riesz transform and L p-cohomology for manifolds with Euclidean ends. Duke Math. J. 133(1), 59–93 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Christodoulou D.: Global solutions of nonlinear hyperbolic equations for small initial data. Commun. Pure Appl. Math. 39(2), 267–282 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christodoulou D., Klainerman S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    Google Scholar 

  10. Chruściel P.T., Ł̧eski S.: Polyhomogeneous solutions of nonlinear wave equations without corner conditions. J. Hyperbolic Differ. Equ. 3(1), 81–141 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dappiaggi C., Moretti V., Pinamonti N.: Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18(4), 349–415 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dappiaggi C., Moretti V., Pinamonti N.: Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285(3), 1129–1163 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Datchev K., Vasy A.: Gluing semiclassical resolvent estimates via propagation of singularities. Int. Math. Res. Not. IMRN 23, 5409–5443 (2012)

    MathSciNet  Google Scholar 

  14. Duistermaat J.J.: On Carleman estimates for pseudo-differential operators. Invent. Math. 17, 31–43 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Duistermaat J.J., Hörmander L.: Fourier integral operators. II. Acta Math. 128(3-4), 183–269 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. arXiv:1306.4203 (2013). (Preprint)

  17. Faure F., Sjöstrand J.: Upper bound on the density of Ruelle resonances for Anosov flows. Commun. Math. Phys. 308(2), 325–364 (2011)

    Article  ADS  MATH  Google Scholar 

  18. Finster F., Strohmaier A.: Gupta–Bleuer quantization of the Maxwell field in globally hyperbolic spacetimes. Ann. Henri. Poincaré 16, 1837–1868 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Gérard C., Wrochna M.: Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325(2), 713–755 (2014)

    Article  ADS  MATH  Google Scholar 

  20. Gérard C., Wrochna M.: Hadamard states for the linearized Yang–Mills equation on curved spacetime. Commun. Math. Phys 337(1), 253–320 (2015)

    Article  ADS  MATH  Google Scholar 

  21. Geroch R.: Domain of dependence. J. Math. Phys. 11, 437–449 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Guillarmou C., Hassell A.: Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. I. Math. Ann. 341(4), 859–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haber, N., Vasy, A.: Propagation of singularities around a Lagrangian submanifold of radial points. Bulletin de la SMF. arXiv:1110.1419. (To appear)

  24. Hintz, P.: Global well-posedness of quasilinear wave equations on asymptotically de sitter spaces. arXiv:1311.6859 (2013). (Preprint)

  25. Hintz P., Vasy A.: Non-trapping estimates near normally hyperbolic trapping. Math. Res. Lett. 21, 1277–1304 (2014)

    Article  MathSciNet  Google Scholar 

  26. Hintz, P., Vasy, A.: Global analysis of quasilinear wave equations on asymptotically Kerr–de Sitter spaces. arXiv:1404.1348

  27. Hintz, P., Vasy, A.: Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter, and Minkowski spacetimes. arXiv:1306.4705 (2013)

  28. Hislop, P.D., Sigal, I.M.: Introduction to spectral theory. Applied Mathematical Sciences. With Applications to Schrödinger Operators, vol. 113. Springer, New York (1996)

  29. Hörmander L.: On the existence and the regularity of solutions of linear pseudo-differential equations. Enseignement Math. (2) 17, 99–163 (1971)

    MathSciNet  MATH  Google Scholar 

  30. Hörmander L.: Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications (Berlin) (Mathematics & Applications), vol. 26. Springer, Berlin (1997)

    Google Scholar 

  31. Klainerman, S.: The null condition and global existence to nonlinear wave equations. In: Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984). Lectures in Appl. Math., volume 23, pp. 293–326. Amer. Math. Soc., Providence (1986)

  32. Klainerman S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38(3), 321–332 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Lindblad H.: Global solutions of quasilinear wave equations. Am. J. Math. 130(1), 115–157 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lindblad H., Rodnianski I.: Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256(1), 43–110 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Lindblad H., Rodnianski I.: The global stability of Minkowski space–time in harmonic gauge. Ann. Math. (2) 171(3), 1401–1477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mazzeo R., Vasy A.: Analytic continuation of the resolvent of the Laplacian on SL(3)/SO(3). Am. J. Math. 126(4), 821–844 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mazzeo R., Vasy A.: Analytic continuation of the resolvent of the Laplacian on symmetric spaces of noncompact type. J. Funct. Anal. 228(2), 311–368 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Melrose R.B.: The Atiyah–Patodi–Singer index theorem. In: Research Notes in Mathematics, vol. 4. A K Peters Ltd, Wellesley (1993)

    Google Scholar 

  39. Melrose, R.B.: Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces. In: Spectral and Scattering Theory (Sanda, 1992). Lecture Notes in Pure and Appl. Math., vol. 161, pp. 85–130. Dekker, New York (1994)

  40. Metcalfe J., Tataru D.: Global parametrices and dispersive estimates for variable coefficient wave equations. Math. Ann. 353(4), 1183–1237 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moretti V.: Quantum out-states holographically induced by asymptotic flatness: invariance under spacetime symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279(1), 31–75 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203(2), 149–233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Radzikowski M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space–time. Commun. Math. Phys. 179(3), 529–553 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Taylor M.E.: Partial differential equations I. Basic theory. In: Applied Mathematical Sciences, 2nd edn, vol. 115. Springer, New York (2011)

    Book  Google Scholar 

  45. Taylor M.E.: Partial differential equations II. Qualitative studies of linear equations. In: Applied Mathematical Sciences, 2nd edn, vol. 116. Springer, New York (2011)

    Book  Google Scholar 

  46. Unterberger A.: Résolution d’équations aux dérivées partielles dans des espaces de distributions d’ordre de régularité variable. Ann. Inst. Fourier (Grenoble) 21(2), 85–128 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vasy A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194(2), 381–513 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Vasy, A.: Microlocal analysis of asymptotically hyperbolic spaces and high-energy resolvent estimates. In: Inverse problems and applications: inside out. II. In: Math. Sci. Res. Inst. Publ., vol. 60, pp. 487–528. Cambridge University Press, Cambridge (2013)

  49. Dang, N.V.: Renormalization of quantum field theory on curved space–times, a causal approach. arXiv:1312.5674 (2013). (Preprint)

  50. Wang, F.: Radiation field for vacuum Einstein equation. PhD thesis, Massachusetts Institute of Technology (2010). arXiv:1304.0407

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Gell-Redman.

Additional information

Communicated by P. T. Chruściel

A. Vasy gratefully acknowledges partial support from the NSF under Grant number DMS-1068742 and DMS-1361432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gell-Redman, J., Haber, N. & Vasy, A. The Feynman Propagator on Perturbations of Minkowski Space. Commun. Math. Phys. 342, 333–384 (2016). https://doi.org/10.1007/s00220-015-2520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2520-8

Keywords

Navigation