Skip to main content
Log in

Differential Models for B-Type Open–Closed Topological Landau–Ginzburg Theories

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a family of differential models for B-type open–closed topological Landau–Ginzburg theories defined by a pair (X,W), where X is any non-compact Calabi–Yau manifold and W is any holomorphic complex-valued function defined on X whose critical set is compact. The models are constructed at cochain level using smooth data, including the twisted Dolbeault algebra of polyvector-valued forms and a twisted Dolbeault category of holomorphic factorizations of W. We give explicit proposals for cochain level versions of the bulk and boundary traces and for the bulk-boundary and boundary-bulk maps of the Landau–Ginzburg theory. We prove that most of the axioms of an open–closed TFT (topological field theory) are satisfied on cohomology and conjecture that the remaining two axioms (namely non-degeneracy of bulk and boundary traces and the topological Cardy constraint) are also satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lazaroiu C.I.: On the boundary coupling of topological Landau–Ginzburg models. JHEP 05, 037 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Herbst M., Lazaroiu C.I.: Localization and traces in open–closed topological Landau–Ginzburg models. JHEP 05, 044 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lazaroiu C.I.: On the structure of open–closed topological field theories in two dimensions. Nucl. Phys. B 603, 497–530 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Babalic, E.M., Doryn, D., Lazaroiu, C.I., Tavakol, M.: On B-type open–closed Landau–Ginzburg theories defined on Calabi–Yau Stein manifolds. To appear in Commun. Math. Phys. arXiv:1610.09813 [math.DG]

  5. Kapustin A., Li Y.: D-branes in Landau–Ginzburg models and algebraic geometry. JHEP 12, 005 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dyckerhoff T., Murfet D.: The Kapustin–Li formula revisited. Adv. Math. 231(3–4), 1858–1885 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Polishchuk A., Vaintrob A.: Chern characters and Hirzebruch–Riemann–Roch formula for matrix factorizations. Duke Math. J. 161(10), 1863–1926 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Doryn, D., Lazaroiu C.I.: Non-degeneracy of cohomological traces for general Landau–Ginzburg models. arXiv:1802.06261 [math.AG]

  9. Serre J.P.: Un théorème de dualité. Comment. Math. Helv. 29, 9–26 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  10. Voisin, C.: Hodge Theory and Complex Algebraic Geometry, I. Cambridge Studies in Advanced Mathematics 76, Cambridge (2002)

  11. Moore, G., Segal, G.: D-branes and K-theory in 2D topological field theory. arXiv:hep-th/0609042

  12. Lauda A.D., Pfeiffer H.: Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras. Topol. Appl. 155(7), 623–666 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Vafa C.: Topological Landau–Ginzburg models. Mod. Phys. Lett. A 6, 337–346 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Labastida J.M.F., Llatas P.M.: Topological matter in two dimensions. Nucl. Phys. B 379, 220–258 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  15. Grauert H., Remmert R.: Coherent Analytic Sheaves. Springer, Berlin, Heidelberg (1984)

    Book  MATH  Google Scholar 

  16. Li, C., Li, S., Saito, K.: Primitive Forms via Polyvector Fields. arXiv:1311.1659v3 [math.AG]

  17. Chiang, H.-L., Li, M.-L.: Virtual residue and an integral formalism. arXiv:1508.02769v2 [math.AG]

  18. Shklyarov D.: Calabi–Yau structures on categories of matrix factorizations. J. Geom. Phys. 119, 193–207 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Am. Math. Soc. 85, 181–207 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huybrechts D.: Complex Geometry: An Introduction. Springer, Berlin, Heidelberg (2005)

    MATH  Google Scholar 

  21. Demailly, J.-P.: Complex Analytic and Differential Geometry. OpenContent Book, http://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf

  22. Bott R., Chern S.S.: Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math. 114(1), 71–112 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dyckerhoff T.: Compact generators in categories of matrix factorizations. Duke Math. J. 159(2), 223–274 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grauert, H., Remmert, R.: Theory of Stein Spaces. Classics in Mathematics, Springer, Berlin, Heidelberg (2008)

  25. Greuel G.-M., Lossen C., Shustin E.: Introduction to Singularities and Deformations. Springer, Berlin, Heidelberg (2008)

    MATH  Google Scholar 

  26. Arnold, V.I., Gusein-Zade, S.M, Varchenko, A.N.: Singularities of Differentiable Maps, Vol. I. Monographs in Math. 82, Birkhäuser (1985)

  27. Dimca, A.: Topics on Real and Complex Singularities: An Introduction. Advanced Lectures in Mathematics, Springer (1987)

  28. Saito K.: Quasihomogene isolierte Singularitten von Hyperflächen. Inventiones Mathematicae 14(2), 123–142 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Andersson M., Wulcan E.: Residue currents with prescribed annihilator ideals. Annales Scient. École Norm. Sup. 40(6), 985–1007 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Carqueville N., Runkel I.: On the monoidal structure of matrix bi-factorisations. J. Phys. A 43, 275401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Carqueville N., Murfet D.: Adjunctions and defects in Landau–Ginzburg models. Adv. Math. 289, 480–566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Doryn, D., Lazaroiu, C.I., Tavakol, M.: Elementary matrix factorizations over Bézout domains. arXiv:1801.02369 [math.AC]

  33. Doryn, D., Lazaroiu, C.I., Tavakol, M.: Matrix factorizations over elementary divisor domains. arXiv:1802.07635 [math.AC]

  34. Kontsevich, M., Soibelman, Y.: Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I. In: Homological Mirror Symmetry. Lecture notes in Physics, vol 757. Springer, Berlin, Heidelberg (2006) arXiv:math/0606241v2

  35. Herbst M., Lazaroiu C.I., Lerche W.: Superpotentials, A-infinity relations and WDVV equations for open topological strings. JHEP 02, 071 (2005)

    Article  ADS  Google Scholar 

  36. Lazaroiu C.I.: D-brane categories. Int. J. Mod. Phys. A 18, 5299–5335 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Carqueville N.: Matrix factorisations and open topological string theory. JHEP 07, 005 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. Witten E.: Phases of N = 2 theories in two-dimensions. Nucl. Phys. B 403, 159–222 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Koszul J.-L., Malgrange B.:: Sur certaines structures fibrées complexes. Archiv der Mathematik 9(1), 102–109 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  40. Pali N.: Faisceaux \({\overline{\partial}}\)-cohérents sur les variétés complexes. Math. Ann. 336(3), 571–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Quillen D.: Superconnections and the Chern character. Topology 24(1), 89–95 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Mirela Babalic.

Additional information

Communicated by C. Schweigert

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babalic, E.M., Doryn, D., Lazaroiu, C.I. et al. Differential Models for B-Type Open–Closed Topological Landau–Ginzburg Theories. Commun. Math. Phys. 361, 1169–1234 (2018). https://doi.org/10.1007/s00220-018-3137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-018-3137-5

Navigation