Skip to main content
Log in

Cohomological Hall Algebras, Vertex Algebras and Instantons

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define an action of the (double of) Cohomological Hall algebra of Kontsevich and Soibelman on the cohomology of the moduli space of spiked instantons of Nekrasov. We identify this action with the one of the affine Yangian of \(\mathfrak {gl}(1)\). Based on that we derive the vertex algebra at the corner \({\mathcal {W}}_{r_{1},r_{2},r_{3}}\) of Gaiotto and Rapčák. We conjecture that our approach works for a big class of Calabi–Yau categories, including those associated with toric Calabi–Yau 3-folds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We use the term “Cohomological” even in the case when we are talking about versions for K-theory or any other generalized cohomology theory.

  2. In this paper we use words “vertex algebras” and “vertex operator algebras” synonymously.

  3. We use the notation \({\mathcal {W}}_r={\mathcal {W}}(\widehat{\mathfrak {gl}(r)})\), i.e. the \({\mathcal {W}}\)-algebra associated to the principal embedding of \(\mathfrak {sl}(2)\) inside \(\mathfrak {gl}(r)\), instead of \({\mathcal {W}}_r={\mathcal {W}} (\widehat{\mathfrak {sl}(r)})\) used in some of the literature. These two differ by a factor of \(\widehat{\mathfrak {gl}(1)}\).

  4. Note also closely related gluing at the level of affine Yangians [38, 39], quantum toroidal algebras [31] or minimal models [47].

  5. More accurately, our BM-homology is defined as the dual to the critical compactly supported cohomology from [58], so they should be called critical Borel–Moore homology.

  6. The central elements \(\{{\mathbf{c}^{\mathbf{(1)}}_i}, i\ge 1\}\) of \(\mathbf SH ^{\vec {c}}\) correspond to the central elements \(\{{\mathbf{c}_\mathbf{i}}\hbar _1^i, i\ge 1\}\) of \(\mathbf SH ^{\mathbf{c}}\) in [93], and \({\mathbf{c}^{\mathbf{(1)}}_\mathbf{0}}\) of \(\mathbf SH ^{\vec {c}}\) corresponds to \(\frac{{\mathbf{c}_\mathbf{0}}}{\hbar _1}\) of \(\mathbf SH ^{\mathbf{c}}\) in [93].

  7. When \({\mathbf{c}^{\mathbf{(1)}}, \mathbf{c}^{\mathbf{(2)}}}=0\), in [93], the Heisenberg subalgebra of \(\mathbf SH ^{\mathbf{c}}\) is generated by \(\{b_{-l}, b_l, b_0, E_0\mid l\ge 0\}\). To compare with the notation in the current paper, we have

    $$\begin{aligned} B_{-l}=\frac{b_{-l}}{\hbar _1}, \,\ B_l=\frac{b_l}{\hbar _1}, \,\ G_0=\frac{E_0}{\hbar _1 \hbar _2}=\frac{\mathbf{c}_0^{(3)}}{\hbar _1 \hbar _2}, \,\ B_0:=G_1=\frac{E_1}{\hbar _2}=-\frac{b_0}{\hbar _1}. \end{aligned}$$
  8. The parameters \(\lambda _i\) can be expressed in terms of the parameters above as \(\lambda _i=(r_1\hbar _1+r_2\hbar _2+r_3\hbar _3)/\hbar _i\). Note also that the commutation relations of the VOA depend only on the scaling invariant combination \(\Psi =-\hbar _1/\hbar _2\).

  9. See also [63] and references therein for discussion of special classes of such truncations.

  10. Note that modes of \(W_1\) commute with the modes of \(W_2\). One can recover the standard commutation relations by adding a multiple of normal ordered product \((W_1W_1)\) to \(W_2\).

  11. Highest weight representations of this form (and similarly for a general \({\mathcal {W}}_{r_1,r_2,r_3}\)) are paremetrized by the spectrum of the Zhu algebra [14, 63, 105] that turn out to be commutative in the case of \({\mathcal {W}}_{r_1,r_2,r_3}\). We expect the representation theory associated to more general toric Calabi–Yau 3-folds to be more complicated. [88] conjectured appearance of modules induced from generic Gelfand–Tsetlin modules of [27] and various irregular modules of [41, 43].

  12. For simplicity, we again decouple \(W_1\) as in the Virasoro case above.

References

  1. Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Y.I.: Construction of instantons. Phys. Lett. A 65, 185 (1978). https://doi.org/10.1016/0375-9601(78)90141-X

    ADS  MathSciNet  MATH  Google Scholar 

  2. Awata, H., Feigin, B., Hoshino, A., Kanai, M., Shiraishi, J., Yanagida, S.: Notes on Ding–Iohara algebra and AGT conjecture. In: Diversity of the Theory of Integrable Systems. arXiv:1106.4088 [math-ph] (2011)

  3. Awata, H., Feigin, B., Shiraishi, J.: Quantum algebraic approach to refined topological vertex. JHEP 1203, 041 (2012). https://doi.org/10.1007/JHEP03(2012)041. arXiv:1112.6074 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  4. Alday, L., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge theories. Lett. Math. Phys. 91(2), 167–197. arXiv:0906.3219

    ADS  MathSciNet  MATH  Google Scholar 

  5. Aganagic, M., Jafferis, D., Saulina, N.: Branes, black holes and topological strings on toric Calabi–Yau manifolds. JHEP 0612, 018 (2006). https://doi.org/10.1088/1126-6708/2006/12/018. arXiv:hep-th/0512245

    ADS  MathSciNet  MATH  Google Scholar 

  6. Arbesfeld, N., Schiffmann, O.: A presentation of the deformed \(W_{1+\infty }\) algebra, symmetries, integrable systems and representations, 1–13. Springer Proc. Math. Stat. 40 (2013). arXiv:1209.0429

  7. Bershtein, M., Feigin, B., Merzon, G.: Plane partitions with a “pit”: generating functions and representation theory. Sel. Math. New Ser. 24(1), 21–62 (2018). arXiv:1512.08779

    MathSciNet  MATH  Google Scholar 

  8. Bourgine, J.-E., Matsuo, Y., Zhang, H.: Holomorphic field realization of \({\bf SH}^{\bf c}\) and quantum geometry of quiver gauge theories. J. High Energ. Phys. (2016). arXiv:1512.02492

  9. Borcherds, R.E.: Vertex algebras, Kac–Moody algebras, and the monster. Proc. Natl. Acad. Sci. 83, 3068 (1986). https://doi.org/10.1073/pnas.83.10.3068

    ADS  MathSciNet  MATH  Google Scholar 

  10. Braden, T.: Hyperbolic localization of intersection cohomology. Transf. Groups 8(3), 209–216 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Braverman, A., Finkelberg, M., Nakajima, H.: Instanton moduli spaces and \({\cal{W}}\)-algebras. Astérisque No. 385, vii+128 pp (2016)

  12. Briot, C., Ragoucy, E.: W-superalgebras as truncation of super-Yangians. J. Phys. A 36, 1057 https://doi.org/10.1088/0305-4470/36/4/314 arXiv:amath/0209339 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Brundan, J., Kleshchev, A.: Shifted Yangians and finite W-algebras. Adv. Math. 200(1), 136–195 (2006). arXiv:math/0407012

    MathSciNet  MATH  Google Scholar 

  14. Brungs, D., Nahm, W.: The associative algebras of conformal field theory. Lett. Math. Phys. 47, 379 (1999). https://doi.org/10.1023/A:1007525300192. arXiv:hep-th/9811239

    MathSciNet  MATH  Google Scholar 

  15. Borisov, D., Joiyce, D.: Virtual fundamental classes for moduli spaces of sheaves on Calabi–Yau four-folds. Geom. Topol. 21(6), 3231–3311 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Cao, Y., Leung, N.: Relative Donaldson–Thomas theory for Calabi–Yau 4-folds. Trans. Am. Math. Soc. 369(9), 6631–6659 (2017). arXiv:1502.04417

    MathSciNet  MATH  Google Scholar 

  17. Costello, K.: Holography and Koszul duality: the example of the M2 brane. arXiv:1705.02500

  18. Costello, K., Gwilliam, O.: Factorization Algebras in Quantum Field Theory, vol. 1. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  19. Davison, B.: The critical COHA of a quiver with potential (2015). Q. J. Math. 68(2), 635–703 (2017). arXiv:1311.7172

    MathSciNet  MATH  Google Scholar 

  20. Davison, B., Meinhardt, S.: Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. arXiv:1601.02479

  21. Dedushenko, M., Gukov, S., Putrov, P.: Vertex algebras and 4-manifold invariants. arXiv:1705.01645

  22. Ding, J., Iohara, K.: Generalization and deformation of Drinfeld quantum affine algebras. Lett. Math. Phys. 41, 181 (1997). https://doi.org/10.1023/A:1007341410987

    MathSciNet  MATH  Google Scholar 

  23. Dotsenko, V.S., Fateev, V.A.: Conformal algebra and multipoint correlation functions in two-dimensional statistical models. Nucl. Phys. B 240, 312 (1984). https://doi.org/10.1016/0550-3213(84)90269-4

    ADS  Google Scholar 

  24. Douglas, M.R.: Branes within branes, hep-th/9512077. Strings, Branes and Dualities, pp. 267–275

    Google Scholar 

  25. Douglas, M.R.: Gauge fields and D-branes. J. Geom. Phys. 28, 255 (1998). https://doi.org/10.1016/S0393-0440(97)00024-7 arXiv:hep-th/9604198

    ADS  MathSciNet  MATH  Google Scholar 

  26. Feigin, B.: Extensions of vertex algebras. Constructions and applications. Russ. Math. Surv. 72(4), 707–763 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Futorny, V., Grantcharov, D., Ramirez, L.E.: Irreducible generic Gelfand–Tsetlin modules of \(gl(n)\). SIGMA Symmetry Integrability Geom. Methods Appl. 11, Paper 018, 13 pp. arXiv:1409.8413 (2015)

  28. Feigin, B., Frenkel, E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B 246, 75 (1990). https://doi.org/10.1016/0370-2693(90)91310-8

    ADS  MathSciNet  MATH  Google Scholar 

  29. Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. Lect. Notes Math. 1620, 349 (1996). https://doi.org/10.1007/BFb0094794. arXiv:hep-th/9310022

    MathSciNet  MATH  Google Scholar 

  30. Feigin, B., Gukov, S.: \(VOA[M4]\). arXiv:1806.02470

  31. Feigin, B., Jimbo, M., Miwa, T., Mukhin, E.: Branching rules for quantum toroidal gl\(_n\). Adv. Math. 300, 229 (2016). https://doi.org/10.1016/j.aim.2016.03.019. arXiv:1309.2147 [math.QA]

    MathSciNet  MATH  Google Scholar 

  32. Felder, G.: BRST approach to minimal models. Nucl. Phys. B 317, 215 (1989) Erratum: [Nucl. Phys. B 324, 548 (1989)]. https://doi.org/10.1016/0550-3213(89)90481-1. https://doi.org/10.1016/0550-3213(89)90568-3

  33. Franco, S., Hanany, A., Kennaway, K.D., Vegh, D., Wecht, B.: Brane dimers and quiver gauge theories. JHEP 0601, 096 (2006). https://doi.org/10.1088/1126-6708/2006/01/096. arXiv:hep-th/0504110

    ADS  MathSciNet  Google Scholar 

  34. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. In: Pure and Applied Mathematics, vol. 134. Academic Press, Boston. liv+508 pp (1988)

    MATH  Google Scholar 

  35. Franzen, H.: On semi-stable CoHa and its modules arising from smooth models. J. Algebra 503, 121–145 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Gadde, A., Gukov, S., Putrov, P.: Fivebranes and 4-manifolds. Arbeitstagung Bonn 155–245 (2013). arXiv:1306.4320 [hep-th]

  37. Gaberdiel, M.R., Gopakumar, R.: Triality in minimal model holography. JHEP 1207, 127 (2012). https://doi.org/10.1007/JHEP07(2012)127. arXiv:1205.2472 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  38. Gaberdiel, M.R., Li, W., Peng, C., Zhang, H.: The supersymmetric affine Yangian. JHEP 1805, 200 (2018). https://doi.org/10.1007/JHEP05(2018). arXiv:1711.07449 [hep-th]. 200

    ADS  MathSciNet  MATH  Google Scholar 

  39. Gaberdiel, M.R., Li, W., Peng, C.: Twin-plane-partitions and \({\cal{N}}=2\) affine Yangian. J. High Energ. Phys. arXiv:1807.11304 [hep-th] (2018)

  40. Gaberdiel, M., Gopakumar, R., Li, W., Peng, C.: Higher spins and Yangian symmetries. J. High Energ. Phys. (2017) 2017, 152. https://doi.org/10.1007/JHEP04(2017)152. arXiv:1702:05100

  41. Gaiotto, D., Lamy-Poirier, J.: Irregular singularities in the \(H_3^+\) WZW model. arXiv:1301.5342 [hep-th]

  42. Gaiotto, D., Rapčák, M.: Vertex algebras at the corner. J. High Energ. Phys. 2019, 160 (2019). https://doi.org/10.1007/JHEP01(2019)160. arXiv:1703.00982

  43. Gaiotto, D., Teschner, J.: Irregular singularities in Liouville theory and Argyres–Douglas type gauge theories. I. JHEP 1212, 050 (2012). https://doi.org/10.1007/JHEP12(2012)050. arXiv:1203.1052 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  44. Ginzburg, V.: Lectures on Nakajima’s quiver varieties (Grenoble, 2008). arXiv:0905.0686

  45. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131(1), 25–83 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Gukov, S., Stosic, M.: Homological algebra of knots and BPS states. In: String-Math 2011. Proceedings of Symposia in Pure Mathematics. No. 85. American Mathematical Society, Providence, pp. 125–171. arXiv:1112.0030

  47. Harada, K., Matsuo, Y.: Plane partition realization of (Web of) W-algebra minimal models. J. High Energ. Phys. 2019, 50 (2019). https://doi.org/10.1007/JHEP02(2019)050. arXiv:1810.08512 [hep-th]

    MathSciNet  MATH  Google Scholar 

  48. Harvey, J., Moore, G.: On the algebras of BPS states. Commun. Math. Phys. 197(3), 489–519 (1998). arXiv:hep-th/9609017

    ADS  MathSciNet  MATH  Google Scholar 

  49. Hanany, A., Kennaway, K.D.: Dimer models and toric diagrams. arXiv:hep-th/0503149

  50. Hanany, A., Vegh, D.: Quivers, tilings, branes and rhombi. JHEP 0710, 029 (2007). https://doi.org/10.1088/1126-6708/2007/10/029. arXiv:hep-th/0511063

    ADS  MathSciNet  Google Scholar 

  51. Hornfeck, K.: W-algebras of negative rank Phys. Lett. B 343, 94 (1995). https://doi.org/10.1016/0370-2693(94)01442-F. arXiv:hep-th/9410013

    ADS  MathSciNet  Google Scholar 

  52. Hwang, S., Rhedin, H.: The BRST Formulation of G/H WZNW models. Nucl. Phys. B 406, 165 (1993). https://doi.org/10.1016/0550-3213(93)90165-L. arXiv:hep-th/9305174

    ADS  MathSciNet  MATH  Google Scholar 

  53. Jafferis, D.: Crystals and intersecting branes. arXiv:hep-th/0607032

  54. Kimura, T.: Double quantization of Seiberg–Witten geometry and W-algebras. arXiv:1612.07590

  55. Kimura, T., Pestun, V.: Quiver elliptic W-algebras. Lett. Math. Phys. 108(6), 1383–1405 (2018). arXiv:1608.04651

    ADS  MathSciNet  MATH  Google Scholar 

  56. Kimura, T., Pestun, V.: Quiver W-algebras. Lett. Math. Phys. 108(6), 1351–1381 (2018). arXiv:1512.08333

    ADS  MathSciNet  MATH  Google Scholar 

  57. Koroteev, P.: A-type quiver varieties and ADHM Moduli spaces. arXiv:1805.00986

  58. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Commun. Number Theory Phys. 5(2), 231–352 (2011)

    MathSciNet  MATH  Google Scholar 

  59. Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson–Thomas invariants and cluster transformations. arXiv:0811.2435

  60. Kontsevich, M., Soibelman, Y.: Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. Homological Mirror Symmetry, pp. 153–219, Lecture Notes in Phys., vol. 757. Springer, Berlin. arXiv:math/0606241 (2009)

  61. Leung, N.C., Vafa, C.: Branes and toric geometry. Adv. Theor. Math. Phys. 2, 91 (1998). https://doi.org/10.4310/ATMP.1998.v2.n1.a4. arXiv:hep-th/9711013

    MathSciNet  MATH  Google Scholar 

  62. Levine, M., Morel, F.: Algebraic Cobordism Theory. Springer, Berlin (2007)

    MATH  Google Scholar 

  63. Linshaw, A.R.: Universal two-parameter \({\cal{W}}_{\infty }\)-algebra and vertex algebras of type \({\cal{W}}(2,3,\ldots , N)\). arXiv:1710.02275 [math.RT]

  64. Litvinov, A., Spodyneiko, L.: On W algebras commuting with a set of screenings JHEP 1611, 138 (2016). https://doi.org/10.1007/JHEP11(2016)138 arXiv:1609.06271 [hep-th]

  65. Miki, K.: A \((q,\gamma )\)-analog of the \(W_{1+\infty }\) algebra. J. Math. Phys. 48, pp. 123520–123520 (2007)

  66. Massey, D.: The Sebastiani–Thom isomorphism in the derived category. Comput. Math. 125(3), 353–362 (2001)

    MathSciNet  MATH  Google Scholar 

  67. Maulik, D., Okounkov, A.: Quantum groups and quantum cohomology (to appear in Asterisque). arXiv:1211.1287

  68. Mozgovoy, S., Reineke, M.: On the non-commutative Donaldson–Thomas invariants arising from brane tilings. Adv. Math. 223(5), 1521–1544. arXiv:0809.0117

    MathSciNet  MATH  Google Scholar 

  69. Nakajima, H.: Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. Math. (2) 145(2), 379–388 (1997)

    MathSciNet  MATH  Google Scholar 

  70. Nakajima, H.: Lectures on Hilbert schemes of points on surfaces. AMS, University Lecture Series, vol. 18 (1999)

  71. Nakajima, H.: Quiver varieties and finite dimensional representations of quantum affine algebras. J. Am. Math. Soc. 14(1), 145–238 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Nakajima, H.: Lectures on perverse sheaves on instanton moduli spaces. IAS/Park City Mathematics Series (2015)

  73. Negut, A.: AGT relations for sheaves on surfaces. arXiv:1711.00390 [math.AG]

  74. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7(5), 831 (2003) https://doi.org/10.4310/ATMP.2003.v7.n5.a4 arXiv:hep-th/0206161

    MathSciNet  MATH  Google Scholar 

  75. Nekrasov, N., Prabhakar, N.: Spiked instantons from intersecting D-branes. arXiv:1611.03478

  76. Nekrasov, N.: BPS/CFT correspondence: non-perturbative Dyson–Schwinger equations and qq-characters. J. High Energ. Phys. 2016, 181 (2016). https://doi.org/10.1007/JHEP03(2016)181. arXiv:1512.05388

  77. Nekrasov, N.: BPS/CFT correspondence II: Instantons at crossroads, moduli and compactness theorem. arXiv:1608.07272

  78. Nekrasov, N.: BPS/CFT correspondence III: Gauge Origami partition function and qq-characters. Commun. Math. Phys. 358(3), 863–894 (2018). arXiv:1701.00189

    ADS  MathSciNet  MATH  Google Scholar 

  79. Nekrasov, N.: BPS/CFT correspondence IV: sigma models and defects in gauge theory. arXiv:1711.11011

  80. Nekrasov, N.: BPS/CFT correspondence V: BPZ and KZ equations from qq-characters. arXiv:1711.11582

  81. Nekrasov, N., Witten, E.: The omega deformation, Branes, integrability, and Liouville theory. JHEP 1009, 092 (2010). https://doi.org/10.1007/JHEP09(2010)092. arXiv:1002.0888 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  82. Nishinaka, T., Yamaguchi, S., Yoshida, Y.: Two-dimensional crystal melting and \(D4{-}D2{-}D0\) on toric Calabi–Yau singularities. arXiv:1304.6724

  83. Ooguri, H., Yamazaki, M.: Crystal melting and toric Calabi–Yau manifolds. Commun. Math. Phys. 292, 179 (2009). https://doi.org/10.1007/s00220-009-0836-y. arXiv:0811.2801 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  84. Peng, Y.N.: Finite W-superalgebras and truncated super Yangians. Lett. Math. Phys. 104, 89 (2014). https://doi.org/10.1007/s11005-013-0656-z. arXiv:1304.3913 [math.QA]

    ADS  MathSciNet  MATH  Google Scholar 

  85. Peng, Y.N.: On shifted super Yangians and a class of finite W-superalgebras. https://doi.org/10.1016/j.jalgebra.2014.09.015 arXiv:1308.4772 [math.QA]

    MathSciNet  MATH  Google Scholar 

  86. Procházka, T.: Exploring \( {{mathcal W }}_{\infty } \) in the quadratic basis. JHEP 1509, 116 (2015). https://doi.org/10.1007/JHEP09(2015)116. arXiv:1411.7697

    ADS  MATH  Google Scholar 

  87. Procházka, T.: \( {\cal{W}}\)-symmetry, topological vertex and affine Yangian. JHEP 1610, 077 (2016). https://doi.org/10.1007/JHEP10(2016)077. arXiv:1512.07178

    ADS  MathSciNet  Google Scholar 

  88. Procházka, T., Rapčák, M.: Webs of W-algebras. arXiv:1711.06888

  89. Procházka, T., Rapčák, M.: \({\cal{W}}\)-algebra Modules, Free Fields, and Gukov–Witten defects. arXiv:1808.08837 [hep-th]

  90. Ragoucy, E., Sorba, P.: Yangian realizations from finite W algebras. Commun. Math. Phys. 203, 551 (1999). https://doi.org/10.1007/s002200050034. arXiv:hep-th/9803243

    ADS  MATH  Google Scholar 

  91. Ren, J., Soibelman, Y.: Cohomological Hall algebras, semicanonical bases and Donaldson–Thomas invariants for 2-dimensional Calabi–Yau categories (with an appendix by Ben Davison) Algebra, geometry, and physics in the 21st century, pp. 261–293, Progr. Math., 324, Birkhäuser/Springer, Cham (2017). arXiv:1508.06068

  92. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the K-theory of the Hilbert scheme of \({\mathbb{A}}^2\). Duke Math. J. 162(2), 279–366 (2013)

    MathSciNet  MATH  Google Scholar 

  93. Schiffmann, O., Vasserot, E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on \({\mathbb{A}}^2\). Publ. Math. Inst. Hautes Etudes Sci. 118, 213–342 (2013)

    MathSciNet  MATH  Google Scholar 

  94. Schiffmann, O., Vasserot, E.: On cohomological Hall algebras of quivers: Yangians. arXiv:1705.07491

  95. Schiffmann, O., Vasserot, E.: On cohomological Hall algebras of quivers: generators. arXiv:1705.07488

  96. Soibelman, Y.: Remarks on Cohomological Hall algebras and their representations, Arbeitstagung Bonn 2013, pp. 355–385, Progr. Math., vol. 319, Birkhäuser, Cham. arXiv:1404.1606 (2016)

  97. Szendroi, B.: Non-commutative Donaldson–Thomas invariants and the conifold. Geom. Topol. 12(2), 1171–1202 (2008). arXiv: 0705.3419

    MathSciNet  MATH  Google Scholar 

  98. Szendroi, B.: Nekrasov’s partition function and refined Donaldson–Thomas theory: the rank one case, SIGMA Symmetry Integrability Geom. Methods Appl. 8, Paper 088, 16 pp. arXiv:1210.5181 (2012)

  99. Tsymbaliuk, A.: The affine Yangian of \(\mathfrak{gl}_1\) revisited. Adv. Math. 304, 583–645 (2017). arXiv:1404.5240

    MathSciNet  MATH  Google Scholar 

  100. Yang, Y., Zhao, G.: The cohomological Hall algebra of a preprojective algebra. Proc. Lond. Math. Soc. 116, 1029–1074. arXiv:1407.7994

    MathSciNet  MATH  Google Scholar 

  101. Yang, Y., Zhao, G.: On two cohomological Hall algebras. Proc. Roy. Soc. Edinb. Sect. A. arXiv:1604.01477

  102. Yang, Y., Zhao, G.: Cohomological Hall algebras and affine quantum groups. Sel. Math. 24(2), 1093–1119 (2018). arXiv:1604.01865

    MathSciNet  MATH  Google Scholar 

  103. Wang, W.Q.: Classification of irreducible modules of \(W_3\) algebra with \(c=-\,2\). Commun. Math. Phys. 195, 113 (1998). https://doi.org/10.1007/s002200050382

    ADS  MATH  Google Scholar 

  104. Wyllard, N.: \(A(N-1)\) conformal Toda field theory correlation functions from conformal \(N = 2\) \(SU(N)\) quiver gauge theories. JHEP 0911, 002 (2009). https://doi.org/10.1088/1126-6708/2009/11/002. arXiv:0907.2189 [hep-th]

    ADS  Google Scholar 

  105. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Am. Math. Soc. 9, 237–302 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of the work was done when Y.Y. and G.Z. were visiting the Perimeter Institute for Theoretical Physics. The research of G.Z. at IST Austria, Hausel group, is supported by the Advanced Grant Arithmetic and Physics of Higgs moduli spaces No. 320593 of the European Research Council. The research of Y.S. was partially supported by an NSF Grant and Munson-Simu Faculty Star Award of KSU. The research of M.R. was supported by the Perimeter Institute for Theoretical Physics, which is in turn supported by the Government of Canada through the Department of Innovation, Science and Economic Development and by the Province of Ontario through the Ministry of Research, and Innovation and Science. We thank to I. Cherednik, K. Costello, E. Diaconescu, D. Gaiotto, V. Gorbounov, S. Gukov, P. Koroteev, F. Malikov, N. Nekrasov, A. Okounkov, V. Pestun, T. Procházka, J. Ren, O. Schiffmann, J. Yagi for useful discussions and correspondences. We thank the anonymous referee for careful reading of the paper. Y.S. is grateful to IHES, MSRI and Perimeter Institute for Theoretical Physics for excellent research conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Yang.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Zhao, Institute of Science and Technology Austria, Am Campus, 1, 3400 Klosterneuburg, Austria; address until July 2018.

Appendices

A The Proof of Theorem 7.1.1

In this section, we prove Theorem 7.1.1 (1). Let \(Y^+\) be the positive part of the affine Yangian \(Y_{\hbar _1, \hbar _2, \hbar _3}(\widehat{\mathfrak {gl}(1)})\), and \(\mathbf Sh \) be the shuffle algebra associated to the 2d COHA \({\mathcal {H}}^{(Q_3,W_3),\mathbf{T}_2}_{B_3=0}\) in Sect. 7.2. By Theorems 7.2.1 and 7.2.4, it suffices to show there is an algebra homomorphism from \(Y^+\) to the shuffle algebra \(\mathbf Sh \), the multiplication of which we denote by \(\star \). We now check the assignment

$$\begin{aligned} \Psi : Y^+\rightarrow \mathbf Sh , \,\ \text {by }e_{r} \mapsto \lambda ^{r} \in \mathbf Sh (1)\cong \mathbf{C}[\hbar _1,\hbar _2,\lambda ] \end{aligned}$$

preserves the relations (Y1) and (Y6).

Let \(\lambda _{12}=\lambda _1-\lambda _2\), and let

$$\begin{aligned}&{{\,\mathrm{fac}\,}}(\lambda _{12}):= \frac{(\lambda _{12}-\hbar _1)(\lambda _{12}-\hbar _2)(\lambda _{12}-\hbar _3)}{ \lambda _{12}}.\\ {}&{{\,\mathrm{fac}\,}}'(\lambda _{12}):={{\,\mathrm{fac}\,}}(\lambda _{21})= \frac{(\lambda _{12}+\hbar _1)(\lambda _{12}+\hbar _2)(\lambda _{12}+\hbar _3)}{ \lambda _{12}}. \end{aligned}$$

Let \(\sigma _{2}:=\hbar _1\hbar _2+\hbar _2\hbar _3+\hbar _1\hbar _3\). Under the condition \(\hbar _1+\hbar _2+\hbar _3=0\), we have the following identities.

$$\begin{aligned}&(X + \hbar _1) (X + \hbar _2) (X + \hbar _3) - (X - \hbar _1) (X - \hbar _2) (X - \hbar _3)= 2 \hbar _1 \hbar _2 \hbar _3. \end{aligned}$$
(27)
$$\begin{aligned}&(X + \hbar _1) (X + \hbar _2) (X + \hbar _3) + (X - \hbar _1) (X - \hbar _2) (X - \hbar _3)= 2 X^3+2\sigma _2X. \end{aligned}$$
(28)

Therefore,

$$\begin{aligned}&{{\,\mathrm{fac}\,}}(\lambda _{12})-{{\,\mathrm{fac}\,}}'(\lambda _{12})={{\,\mathrm{fac}\,}}(\lambda _{12})-{{\,\mathrm{fac}\,}}(\lambda _{21} )=-2\frac{\hbar _1\hbar _2\hbar _3}{\lambda _{12}}, \\&{{\,\mathrm{fac}\,}}(\lambda _{12})+{{\,\mathrm{fac}\,}}'(\lambda _{12})={{\,\mathrm{fac}\,}}(\lambda _{12})+{{\,\mathrm{fac}\,}}'(\lambda _{21} )=2\frac{ \lambda _{12}^3+\sigma _2\lambda _{12}}{\lambda _{12}}. \end{aligned}$$

Let \(R=\mathbf{C}[\hbar _1, \hbar _2]\). By the shuffle formula (20), the multiplication of \(\mathbf Sh \) is given by

$$\begin{aligned}&R[\lambda _1]\otimes R[\lambda _2] \rightarrow R[\lambda _1, \lambda _2]^{{\mathfrak {S}}_2}, \\&(f(\lambda _1), g(\lambda _2))\mapsto f(\lambda _1)g(\lambda _2) {{\,\mathrm{fac}\,}}(\lambda _{12}) +f(\lambda _2)g(\lambda _1) {{\,\mathrm{fac}\,}}'(\lambda _{12}). \end{aligned}$$

Therefore, for any \(a, b\in \mathbf{N}\), \( \lambda ^a\star \lambda ^b=\lambda _1^a\lambda _2^b {{\,\mathrm{fac}\,}}(\lambda _{12}) +\lambda _1^b\lambda _2^a {{\,\mathrm{fac}\,}}'(\lambda _{12}) \). This gives that

$$\begin{aligned}&\lambda ^a\star \lambda ^b-\lambda ^b\star \lambda ^a=-2\frac{\hbar _1\hbar _2\hbar _3}{\lambda _{12}}\Big (\lambda ^a_1 \lambda ^b_2-\lambda ^b_1 \lambda ^a_2\Big ) \nonumber \\&\lambda ^a\star \lambda ^b+\lambda ^b\star \lambda ^a=\Big (\lambda _1^a\lambda _2^b +\lambda ^b_1\lambda ^a_2 \Big ) 2 \frac{\lambda _{12}^3+\sigma _2\lambda _{12}}{\lambda _{12}}. \end{aligned}$$
(29)

Using (27), we now compute

$$\begin{aligned}&\Psi ([e_{i+3}, e_j]-3[e_{i+2}, e_{j+1}]+3[e_{i+1}, e_{j+2}]-[e_i, e_{j+3}]+\sigma _2([e_{i+1}, e_j]-[e_i, e_{j+1}]))\\&\quad =-2\frac{\hbar _1\hbar _2\hbar _3}{\lambda _{12}} \Big (\lambda ^{i+3}_1 \lambda ^{j}_2-\lambda ^{j}_1 \lambda ^{i+3}_2 -3(\lambda ^{i+2}_1 \lambda ^{j+1}_2-\lambda ^{j+1}_1 \lambda ^{i+2}_2) +3(\lambda ^{i+1}_1 \lambda ^{j+2}_2-\lambda ^{j+2}_1 \lambda ^{i+1}_2)\\&\qquad -(\lambda ^{i}_1 \lambda ^{j+3}_2-\lambda ^{j+3}_1 \lambda ^{i}_2) +\sigma _2((\lambda ^{i+1}_1 \lambda ^{j}_2-\lambda ^{j}_1 \lambda ^{i+1}_2) -(\lambda ^{i}_1 \lambda ^{j+1}_2-\lambda ^{j+1}_1 \lambda ^{i}_2)) \Big )\\&\quad =-2\frac{\hbar _1\hbar _2\hbar _3}{\lambda _{12}} \Big (\lambda _1^{i}\lambda _2^j (\lambda _{12}^{3}+\sigma _2\lambda _{12})-\lambda _1^{j}\lambda ^i_2 (\lambda _{21}^{3}+\sigma _2\lambda _{21}) \Big )\\&\quad =-2\frac{\hbar _1\hbar _2\hbar _3}{\lambda _{12}} (\lambda _1^{i}\lambda _2^j+\lambda _1^{j}\lambda ^i_2) (\lambda _{12}^{3}+\sigma _2\lambda _{12}). \end{aligned}$$

By (29), the above is the same as

$$\begin{aligned} -\hbar _1\hbar _2\hbar _3 (\lambda ^i\star \lambda ^j+\lambda ^j\star \lambda ^i)=\Psi (-\sigma _3 \{e_i, e_j\}). \end{aligned}$$

Therefore, the assignment \(\Psi \) preserves the relation (Y1).

By the shuffle formula (20), the multiplication of \(\mathbf Sh \) is given by

$$\begin{aligned}&R[\lambda _1]\otimes R[\lambda _2, \lambda _3]^{{\mathfrak {S}}_2} \rightarrow R[\lambda _1, \lambda _2, \lambda _3]^{{\mathfrak {S}}_3}, \\&(f(\lambda _1), g(\lambda _2, \lambda _3)) \mapsto f(\lambda _1)g(\lambda _2, \lambda _3) {{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{13})\\&\quad +f(\lambda _2)g(\lambda _1, \lambda _3) {{\,\mathrm{fac}\,}}(\lambda _{21}) {{\,\mathrm{fac}\,}}(\lambda _{23}) +f(\lambda _3)g(\lambda _2, \lambda _1) {{\,\mathrm{fac}\,}}(\lambda _{32}) {{\,\mathrm{fac}\,}}(\lambda _{31}), \end{aligned}$$

and

$$\begin{aligned}&R[\lambda _1, \lambda _2]^{{\mathfrak {S}}_2}\otimes R[\lambda _3] \rightarrow R[\lambda _1, \lambda _2, \lambda _3]^{{\mathfrak {S}}_3}, \\&(f(\lambda _1, \lambda _2), g(\lambda _3)) \mapsto f(\lambda _1, \lambda _2)g(\lambda _3)) {{\,\mathrm{fac}\,}}(\lambda _{13}) {{\,\mathrm{fac}\,}}(\lambda _{23})\\&\quad + f(\lambda _3, \lambda _2)g(\lambda _1)) {{\,\mathrm{fac}\,}}(\lambda _{31}) {{\,\mathrm{fac}\,}}(\lambda _{21}) +f(\lambda _1, \lambda _3)g(\lambda _2)) {{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{32}). \end{aligned}$$

Therefore, we have

$$\begin{aligned}&e_{c}\star [e_{a}, e_{b}] = -2\sigma _3 \lambda _1^c\star \frac{\Big (\lambda ^a_2 \lambda ^b_3-\lambda ^b_2 \lambda ^a_3\Big )}{\lambda _{23}}\\&\quad =-2\sigma _3 \frac{(\lambda ^a_2 \lambda ^b_3-\lambda ^b_2 \lambda ^a_3)\lambda _1^c }{\lambda _{23}} {{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{13}) -2\sigma _3 \frac{(\lambda ^a_1 \lambda ^b_3-\lambda ^b_1 \lambda ^a_3)\lambda _2^c }{\lambda _{13}} {{\,\mathrm{fac}\,}}(\lambda _{21}) {{\,\mathrm{fac}\,}}(\lambda _{23})\\&\qquad -2\sigma _3 \frac{(\lambda ^a_2 \lambda ^b_1-\lambda ^b_2 \lambda ^a_1)\lambda _3^c }{\lambda _{21}} {{\,\mathrm{fac}\,}}(\lambda _{32}) {{\,\mathrm{fac}\,}}(\lambda _{31}), \end{aligned}$$

and

$$\begin{aligned}&[e_{a}, e_{b}] \star e_{c} =-2\sigma _3\frac{\Big (\lambda ^a_1 \lambda ^b_2-\lambda ^b_1 \lambda ^a_2\Big )}{\lambda _{12}}\star \lambda _3^c\\&\quad = -2\sigma _3\frac{(\lambda ^a_1 \lambda ^b_2-\lambda ^b_1 \lambda ^a_2)\lambda _3^c }{\lambda _{12}} {{\,\mathrm{fac}\,}}(\lambda _{13}) {{\,\mathrm{fac}\,}}(\lambda _{23}) -2\sigma _3\frac{(\lambda ^a_3 \lambda ^b_2-\lambda ^b_3 \lambda ^a_2)\lambda _1^c }{\lambda _{32}} {{\,\mathrm{fac}\,}}(\lambda _{31}) {{\,\mathrm{fac}\,}}(\lambda _{21})\\&\qquad -2\sigma _3\frac{(\lambda ^a_1 \lambda ^b_3-\lambda ^b_1 \lambda ^a_3)\lambda _2^c }{\lambda _{13}} {{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{32}). \end{aligned}$$

We compute

$$\begin{aligned}&[e_c, [e_a, e_b]] =e_c\star [e_a, e_b]-[e_a, e_b]\star e_c\\&\quad =-2\sigma _3 \frac{(\lambda ^a_2 \lambda ^b_3-\lambda ^b_2 \lambda ^a_3)\lambda _1^c }{\lambda _{23}} {{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{13}) -2\sigma _3 \frac{(\lambda ^a_1 \lambda ^b_3-\lambda ^b_1 \lambda ^a_3)\lambda _2^c }{\lambda _{13}} {{\,\mathrm{fac}\,}}(\lambda _{21}) {{\,\mathrm{fac}\,}}(\lambda _{23})\\ {}&\quad \quad -2\sigma _3 \frac{(\lambda ^a_2 \lambda ^b_1-\lambda ^b_2 \lambda ^a_1)\lambda _3^c }{\lambda _{21}} {{\,\mathrm{fac}\,}}(\lambda _{32}) {{\,\mathrm{fac}\,}}(\lambda _{31})\\ {}&\quad \quad +2\sigma _3\frac{(\lambda ^a_1 \lambda ^b_2-\lambda ^b_1 \lambda ^a_2)\lambda _3^c }{\lambda _{12}} {{\,\mathrm{fac}\,}}(\lambda _{13}) {{\,\mathrm{fac}\,}}(\lambda _{23}) +2\sigma _3\frac{(\lambda ^a_3 \lambda ^b_2-\lambda ^b_3 \lambda ^a_2)\lambda _1^c }{\lambda _{32}} {{\,\mathrm{fac}\,}}(\lambda _{31}) {{\,\mathrm{fac}\,}}(\lambda _{21})\\ {}&\quad \quad +2\sigma _3\frac{(\lambda ^a_1 \lambda ^b_3-\lambda ^b_1 \lambda ^a_3)\lambda _2^c }{\lambda _{13}} {{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{32})\\&\quad =-2\sigma _3 \lambda _1^c(\lambda ^a_2 \lambda ^b_3-\lambda ^b_2 \lambda ^a_3) \Big (\frac{ {{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{13})}{\lambda _{23}} +\frac{ {{\,\mathrm{fac}\,}}(\lambda _{21}) {{\,\mathrm{fac}\,}}(\lambda _{31})}{\lambda _{32}} \Big )\\&\quad \quad -2 \sigma _3 \lambda _2^c (\lambda ^a_1 \lambda ^b_3-\lambda ^b_1 \lambda ^a_3) \Big (\frac{{{\,\mathrm{fac}\,}}(\lambda _{21}) {{\,\mathrm{fac}\,}}(\lambda _{23})}{\lambda _{13} } +\frac{{{\,\mathrm{fac}\,}}(\lambda _{12}) {{\,\mathrm{fac}\,}}(\lambda _{32})}{\lambda _{31} } \Big ) \\&\quad \quad -2\sigma _3 \lambda _3^c (\lambda ^a_2 \lambda ^b_1-\lambda ^b_2 \lambda ^a_1) \Big (\frac{{{\,\mathrm{fac}\,}}(\lambda _{32}) {{\,\mathrm{fac}\,}}(\lambda _{31})}{\lambda _{21}} + \frac{{{\,\mathrm{fac}\,}}(\lambda _{23}) {{\,\mathrm{fac}\,}}(\lambda _{13})}{\lambda _{12}} \Big ). \end{aligned}$$

Plug the above formula into the following

$$\begin{aligned} {{\,\mathrm{Sym}\,}}_{{\mathfrak {S}}_3}[e_{i_1}, [e_{i_2}, e_{i_3+1}]]&=[e_{i_1}, [e_{i_2}, e_{i_3+1}]] +[e_{i_2}, [e_{i_1}, e_{i_3+1}]] + [e_{i_3}, [e_{i_2}, e_{i_1+1}]] \nonumber \\&\quad + [e_{i_1}, [e_{i_3}, e_{i_2+1}]] +[e_{i_2}, [e_{i_3}, e_{i_1+1}]] + [e_{i_3}, [e_{i_1}, e_{i_2+1}]]. \end{aligned}$$
(30)

The term in (30) involving \(\lambda _1^{i_1}\lambda _2^{i_2}\lambda _3^{i_3}\) is

$$\begin{aligned}&-2\sigma _{3}\lambda _1^{i_1}\lambda _2^{i_2}\lambda _3^{i_3} \Big (-{{\,\mathrm{fac}\,}}(\lambda _{12}){{\,\mathrm{fac}\,}}(\lambda _{13}) +{{\,\mathrm{fac}\,}}(\lambda _{21}){{\,\mathrm{fac}\,}}(\lambda _{31}) -{{\,\mathrm{fac}\,}}(\lambda _{21}){{\,\mathrm{fac}\,}}(\lambda _{23})\\&\quad +{{\,\mathrm{fac}\,}}(\lambda _{12}){{\,\mathrm{fac}\,}}(\lambda _{32}) -{{\,\mathrm{fac}\,}}(\lambda _{32}){{\,\mathrm{fac}\,}}(\lambda _{31}) +{{\,\mathrm{fac}\,}}(\lambda _{23}){{\,\mathrm{fac}\,}}(\lambda _{13}) \Big )=0. \end{aligned}$$

By symmetry, all other terms involving \(\lambda _1^{i_a}\lambda _2^{i_b}\lambda _3^{i_c}\), for \(\{a, b, c\}=\{1, 2, 3\}\), in (30) are zero. Therefore, \(\Psi ({{\,\mathrm{Sym}\,}}_{{\mathfrak {S}}_3}[e_{i_1}, [e_{i_2}, e_{i_3+1}]])=0\). This completes the proof. \(\quad \square \)

B The Proof of Proposition 6.4.1

In this section, we prove Proposition 6.4.1. We follow the notations from (11).

Definition B.0.1

Passing to the localization of \(V_{\vec {r}}\) and \( V_{\vec {r'}}\otimes V_{\vec {r''}}\), we define the map \(l: V_{\vec {r}}\rightarrow V_{\vec {r'}}\otimes V_{\vec {r''}}\) in Proposition 6.4.1 as the inverse of the following morphism:

$$\begin{aligned} (-1)^{(r_1'+r_2'+r_3')n''} \eta ^{st}_{*} \circ (p^{st})^*: V_{\vec {r'}}(n')\otimes V_{\vec {r''}}(n'')\rightarrow V_{\vec {r}}(n). \end{aligned}$$

Lemma B.0.2

Notations as in Sect. 6.4, let \({\mathcal {V}}_n\) and \({\mathcal {E}}_{\vec {r}}\) be the tautological bundles on \({\mathcal {M}}_{\vec {r}}(n)\). We have

  1. 1.

    \(p^*({\mathcal {V}}_{n'}\boxtimes {\mathcal {V}}_{n''})=\eta ^*{\mathcal {V}}_{n}\);

  2. 2.

    \(p^*({\mathcal {E}}_{\vec {r'}}\boxtimes {\mathcal {E}}_{\vec {r''}})=\eta ^*{\mathcal {E}}_{\vec {r''}}\);

  3. 3.

    Consequently, for \(\psi (z)\in {\mathcal {H}}^0\), and for all \(x\in V_{r_1, r_2, r_3}\), we have

    $$\begin{aligned} \Delta ^{{{\,\mathrm{Dr}\,}}}(\psi (z))\bullet l(x)=l(\psi (z) \bullet x). \end{aligned}$$

Proof

The first two are clear by definition. Now we prove the last equation. By the definition of l, it suffices to show that

$$\begin{aligned} \eta ^{st}_{*} \circ (p^{st})^* (\Delta ^{{{\,\mathrm{Dr}\,}}}(\psi (z))\bullet {\tilde{l}} x)=\psi (z)\bullet x, \end{aligned}$$

where \({\tilde{l}}:=(-1)^{(r_1'+r_2'+r_3')n''} l\). By definition \(\Delta ^{{{\,\mathrm{Dr}\,}}}(\psi (z))=\psi (z)\otimes \psi (z)\) and \(\psi (z) \bullet x=\lambda _{-1/z}({\mathcal {F}}_{n,\vec {r}})\cdot x\). Therefore,

$$\begin{aligned} \eta ^{st}_{*} \circ (p^{st})^* (\Delta ^{{{\,\mathrm{Dr}\,}}}(\psi (z))\bullet {\tilde{l}} x)&=\eta ^{st}_{*} \circ (p^{st})^* (\psi (z)\otimes \psi (z)\bullet {\tilde{l}} x)\\&=\eta ^{st}_{*} \circ (p^{st})^* \Big (\lambda _{-1/z}({\mathcal {F}}_{n',\vec {r}'} \boxtimes {\mathcal {F}}_{n',\vec {r}'})\cdot {\tilde{l}} x\Big )\\&=\eta ^{st}_{*} \Big (\lambda _{-1/z}((\eta ^{st})^* {\mathcal {F}}_{n,\vec {r}}) \cdot (p^{st})^*({\tilde{l}} x)\Big )\\&=\lambda _{-1/z}({\mathcal {F}}_{n,\vec {r}}) \cdot \eta ^{st}_{*} (p^{st})^*({\tilde{l}} x) \\&= \psi (z)\bullet {\tilde{l}}^{-1} {\tilde{l}}(x) = \psi (z)\bullet x. \end{aligned}$$

This completes the proof. \(\quad \square \)

We now prove Proposition 6.4.1. Lemma B.0.2 implies Proposition 6.4.1 when \(\alpha \) is an element in \({\mathcal {H}}^0\). We will now focus on the case when \(\alpha \in \mathcal {SH}^{(Q_3, W_3)}\). The proof below is similar to the proof of associativity of the Hall multiplication.

The diagram (6) and correspondence (11) induce the following diagram

The disjoint union in the above breaks the diagram into two diagrams, one for each component of the disjiont union. The maps in the two diagrams are schematically represented as follows. Here the numbers \(1, n', n''\) in the rectangle are the sizes of the corresponding matrices, which also schematically represents the subquotients in (6).

(31)

and

(32)

We have two ways from the lower left corner \((\mathfrak {gl}_1)^3 \times {\mathcal {M}}_{ \vec {r}}^{st}(n)\) to the upper right corner \( ({\mathcal {M}}_{\vec {r}'}^{st}(n'+1) \times {\mathcal {M}}_{\vec {r}''}^{st}(n'')) \sqcup ({\mathcal {M}}_{\vec {r}'}^{st}(n') \times {\mathcal {M}}_{\vec {r}''}^{st}(n''+1))\). The corresponding maps

$$\begin{aligned}&H^*_c((\mathfrak {gl}_1)^3 \times {\mathcal {M}}_{ \vec {r}}^{st}(n);\varphi _{{{\,\mathrm{tr}\,}}})^\vee \rightarrow \big (V_{\vec {r}'}(n'+1)\otimes V_{\vec {r}''}(n'')\big )\bigoplus \big (V_{\vec {r}'}(n')\otimes V_{\vec {r}''}(n''+1)\big ) \end{aligned}$$

will simply be referred to as Way 1 and Way 2.

Way 1: using the bottom horizontal and right vertical correspondences of (31) (32), and follow the standard procedure as in Sect. 5.

Way 2: using the left vertical and top horizontal correspondences of (31) (32), and follow the standard procedure as in Sect. 5.

For any \(\alpha \in \mathcal {SH}^{(Q_3, W_3)}\), \(x \in V_{\vec {r}}\), clearly Way 1 applied to \((\alpha \otimes x)\) gives \(l (\alpha \bullet x)\). We claim that Way 2 applied to \((\alpha \otimes x)\) gives \(\Delta ^{{{\,\mathrm{Dr}\,}}}(\alpha ) \bullet l(x)\). Then, convolutions on the level of critical cohomology of diagrams (31), (32) lead to \(l (\alpha \bullet x)=\Delta ^{{{\,\mathrm{Dr}\,}}}(\alpha ) \bullet l(x)\). This in turn implies Proposition 6.4.1(1). As the maps l and \(\Delta ^{{{\,\mathrm{Dr}\,}}}\) are co-associative in the natural sense, applying Proposition 6.4.1(1) iteratively gives Proposition 6.4.1(2).

In the rest of this section we present the proof in relative details.

The extension in (33) is

$$\begin{aligned} Z_{(0, \vec {r})}(1, n)^{st}=\{(B_i, I_{ab}, J_{ab})_{i\in {\underline{3}}, ab\in {\overline{3}}}\in {\mathcal {M}}_{ \vec {r}}(1+n)^{st}\mid B_i({\mathcal {V}}_1) \subset {\mathcal {V}}_1, J_{ab}({\mathcal {V}}_1)=0 \}. \end{aligned}$$

The extension consists of

$$\begin{aligned} Z_{(\vec {r}, 0)}(n,1)^{op}:=\{(B_i, I_{ab}, J_{ab})_{i\in {\underline{3}}, ab\in {\overline{3}}}\in {\mathcal {M}}_{ \vec {r}}(1+n)\mid B_i({\mathcal {V}}) \subset {\mathcal {V}}, I_{ab}({\mathcal {E}}_{r_c})\subset {\mathcal {V}}, a\ne b\ne c\}, \end{aligned}$$

where op means the opposite stability condition.

We consider

(33)

Lemma B.0.3

For \(\alpha (\lambda )\in {\mathcal {H}}^{Q_3, W_3}(1)=\mathbf{C}[\lambda ]\), and \(x\in V_{r_1, r_2, r_3}(n)\), we have the equality

$$\begin{aligned} (\eta _1)_*(p_1)^*(\alpha (\lambda ), x)=(-1)^{r_1+r_2+r_3}(\eta _2)_*\big (\psi (\lambda ) \cdot (p_2)^*(x, \alpha (\lambda ))\big ). \end{aligned}$$

Proof

Let us compute the difference between the two maps induced by the two diagrams above. Let \({\mathcal {V}}\) (resp. \({\mathcal {E}}_{r_i}, i=1, 2, 3\)) be the tautological dimension n (resp. dimension \(r_i, i=1, 2, 3\)) bundle on \({\mathcal {M}}_{r_1, r_2, r_3}(n)\) and \({\mathcal {V}}_1\) is the tautological line bundle on \({\mathcal {M}}_{0, 0, 0}(1)\).

Let \(\lambda \) be the Chern root of \({\mathcal {V}}_1\), \(\lambda _1, \ldots , \lambda _n\) the Chern roots of \({\mathcal {V}}\), and \(\mu _1, \ldots , \mu _{r_i}\) the Chern roots of \({\mathcal {E}}_{r_i}\), \(i=1, 2, 3\). The difference of and is

$$\begin{aligned}&\Big ({{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {V}}) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {E}}_{r_1}) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {E}}_{r_2}) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {E}}_{r_3}) \Big )\\&-\Big ({{\,\mathrm{{Hom}}\,}}({\mathcal {V}}, {\mathcal {V}}_1) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_1}, {\mathcal {V}}_1) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_2}, {\mathcal {V}}_1)\oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_3}, {\mathcal {V}}_1) \Big ). \end{aligned}$$

Taking into account the torus action in Sect. 5.1, we have

$$\begin{aligned}&eu\Big (\oplus _{i=1}^3{{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, q_i{\mathcal {V}}) -\oplus _{i=1}^3{{\,\mathrm{{Hom}}\,}}({\mathcal {V}}, q_i{\mathcal {V}}_1) \Big )\\&\quad =\frac{eu({\mathcal {V}}_1^*\otimes q_1{\mathcal {V}})eu({\mathcal {V}}_1^*\otimes q_2{\mathcal {V}})eu({\mathcal {V}}_1^*\otimes q_3{\mathcal {V}}) }{eu({\mathcal {V}}^*\otimes q_1{\mathcal {V}}_1) eu({\mathcal {V}}^*\otimes q_2{\mathcal {V}}_1) eu({\mathcal {V}}^*\otimes q_3{\mathcal {V}}_1) } \\&\quad = \prod _{i=1}^n \frac{ \lambda _i -\lambda +\hbar _1}{ \lambda -\lambda _i +\hbar _1} \prod _{i=1}^n \frac{ \lambda _i -\lambda +\hbar _2}{ \lambda -\lambda _i +\hbar _2} \prod _{i=1}^n \frac{ \lambda _i -\lambda +\hbar _3}{ \lambda -\lambda _i +\hbar _3}\\&\quad = (-1)^{3n}\prod _{i=1}^n \frac{ \lambda -\lambda _i-\hbar _1}{ \lambda -\lambda _i +\hbar _1} \prod _{i=1}^n \frac{ \lambda -\lambda _i-\hbar _2}{ \lambda -\lambda _i +\hbar _2} \prod _{i=1}^n \frac{ \lambda -\lambda _i-\hbar _3}{ \lambda -\lambda _i +\hbar _3}. \end{aligned}$$

Similarly,

$$\begin{aligned}&eu\Big ({{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, q_2 q_3 {\mathcal {E}}_{r_1}) -{{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_1}, {\mathcal {V}}_1) \Big ) =eu\Big ({\mathcal {V}}_1^*\otimes q_2 q_3 {\mathcal {E}}_{r_1} -{\mathcal {E}}_{r_1}^*\otimes {\mathcal {V}}_1 \Big ) \\&\quad =\prod _{i=1}^{r_1}\frac{ \mu _i-\lambda -\hbar _1}{\lambda -\mu _i} =(-1)^{r_1} \prod _{i=1}^{r_1}\frac{\lambda - \mu _i+\hbar _1}{\lambda -\mu _i} \end{aligned}$$

and

$$\begin{aligned}&eu\Big ({{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, q_1 q_3 {\mathcal {E}}_{r_2}) -{{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_2}, {\mathcal {V}}_1) \Big ) =(-1)^{r_2} \prod _{i=1}^{r_2}\frac{\lambda - \mu _i+\hbar _2}{\lambda -\mu _i}, \\&eu\Big ({{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, q_1 q_2 {\mathcal {E}}_{r_3}) -{{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_3}, {\mathcal {V}}_1) \Big ) =(-1)^{r_3} \prod _{i=1}^{r_3}\frac{\lambda - \mu _i+\hbar _3}{\lambda -\mu _i}. \end{aligned}$$

Therefore,

$$\begin{aligned}&eu\Big (\big ({{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {V}}) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {E}}_{r_1}) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {E}}_{r_2}) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {V}}_1, {\mathcal {E}}_{r_3}) \big ) \nonumber \\&\qquad -\big ({{\,\mathrm{{Hom}}\,}}({\mathcal {V}}, {\mathcal {V}}_1) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_1}, {\mathcal {V}}_1) \oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_2}, {\mathcal {V}}_1)\oplus {{\,\mathrm{{Hom}}\,}}({\mathcal {E}}_{r_3}, {\mathcal {V}}_1) \big )\Big ) \nonumber \\&\quad = (-1)^{3n+r_1+r_2+r_3} \Big (\prod _{a=1}^{r_1}\frac{\lambda -\mu _a+\hbar _1}{\lambda -\mu _a} \prod _{b=1}^{r_2}\frac{\lambda -\mu _b+\hbar _2}{\lambda -\mu _b} \prod _{b=1}^{r_3}\frac{\lambda -\mu _c+\hbar _3}{\lambda -\mu _c} \nonumber \\&\phantom {123456789} \cdot \prod _{d=1}^{n}\frac{\lambda -\lambda _d-\hbar _1}{\lambda -\lambda _d+\hbar _1} \frac{\lambda -\lambda _d-\hbar _2}{\lambda -\lambda _d+\hbar _2} \frac{\lambda -\lambda _d-\hbar _3}{\lambda -\lambda _d+\hbar _3}\Big ). \end{aligned}$$
(34)

By the formula (16) of \({\mathcal {H}}^0\)-action on \(x\in V_{r_1, r_2, r_3}(n)\), (34) coincides with \((-1)^{3n+r_1+r_2+r_3}\psi (\lambda )\cdot x \). Recall that in the definition of \(\eta _{i*}\) as in (13) Step 5, a change of group from a parabolic to \({{\,\mathrm{GL}\,}}_{n+1}\) appears, where the parabolics are opposite for \(\eta _1\) and \(\eta _2\), which results a sign \((-1)^n\) in the pushforwards, canceling the sign \((-1)^{3n}\) above. This completes the proof. \(\quad \square \)

Lemma B.0.4

Way 2 gives \(\Delta ^{{{\,\mathrm{Dr}\,}}}(\alpha ) \bullet l(x)\).

Proof

Assume \(\alpha =f(\lambda )\) is an element in \({\mathcal {H}}^{(Q_3, W_3)}(1) =\mathbf{C}[\lambda ]\), for some polynomial f. By definition of the Drinfeld coproduct, we have

$$\begin{aligned} \Delta ^{{{\,\mathrm{Dr}\,}}}(\alpha ) =&\psi (\lambda ) \otimes \alpha +\alpha \otimes 1\\ =&1\otimes \alpha -(\hbar _1\hbar _2\hbar _3) \sum _{j\ge 0} \psi _{j} \otimes \lambda ^{j+1} \alpha +\alpha \otimes 1 \in Y^{\ge 0}{\widehat{\otimes }} Y^{\ge 0}. \end{aligned}$$

For \(\alpha \in {\mathcal {H}}^{(Q_3, W_3)}(1)\), and \(x_1\in V_{\vec {r}'}, x_2\in V_{\vec {r}''}\), applying pullback and pushforward via the following correspondence,

we obtain \((\alpha \otimes 1)\bullet (x_1\otimes x_2)=(\alpha \bullet x_1) \otimes x_2\).

We now use the following correspondence

Notice that we need to switch \((\mathfrak {gl}_1)^3\) with \({\mathcal {M}}_{ \vec {r}'}^{st}(n')\) in order the apply pullback and pushforward to the above correspondence. By Lemma B.0.3, we obtain \((-1)^{r_1'+r_2'+r_3'}(\psi (\lambda ) \otimes \alpha ) \bullet (x_1\otimes x_2)\). Therefore, Way 2 gives \(\Delta ^{{{\,\mathrm{Dr}\,}}}(\alpha ) \bullet l(x)\). This completes the proof. \(\square \)

C More on the Coproduct \(\Delta ^{\vec {c}}\)

In this section we prove Propositions 8.2.2 and 8.3.6. The outline of the proofs is as follows:

  1. 1.

    Prove the primitivity of the Heisenberg operator \(B_1\) using the definition of the hyperbolic localization.

  2. 2.

    Take the opposite A-action on \(\mathfrak {M}_{\vec {r}}\), and the comparison of these two A-actions defines an R-matrix. This R-matrix defines a subalgebra of \(\mathrm{End}(\oplus _{\vec {r}}V_{\vec {r}})\) (a generalization of the Maulik–Okounkov Yangian in this 3d setting). Step 1, together with the geometric interpretations of the central and Cartan elements shows that \(\mathbf SH ^{\vec {c}}\) has a natural map to this subalgebra.

  3. 3.

    When two of the three coordinates of \(\vec {r}=(r_1,r_2,r_3)\) are zero, the hyperbolic localization \(h:V_{\vec {r}}\rightarrow V_{\vec {r'}}\otimes V_{\vec {r''}}\), under the dimensional reduction, agrees with the one from Nakajima and hence the stable envelope of Maulik–Okounkov.

  4. 4.

    Observe that the map \(\Delta ^{\vec {c}}:\mathbf SH ^{\vec {c}}\rightarrow (\mathbf SH ^{\vec {c}})^{\otimes 2}\) is uniquely determined by the fact that, when applied to modules \(V_{\vec {r}}\) with two of the three coordinates of \(\vec {r}=(r_1,r_2,r_3)\) being zero, it agrees with [67, 72, 93]. This in particular proves both Propositions 8.2.2 and 8.3.6. These will be done respectively in the rest of this section. Through out this section, for simplicity we ignore homological degree shiftings.

1.1 C.1 The primitivity of \(B_1\)

Consider the following commutative diagram

(35)

The right two squares in the diagram are not Cartesian. Nevertheless, the maps \(p_2\) and \(p_3\) factorize with \(p_2''\) and \(p_3''\) affine bundles, and the squares with \(p_1,q_2, p_2',q_3'\) and \(p_2,b_2,p_3',b_3'\) both Cartesian. For clarity, we remark that \(p_2''\), defined as a map on the union of two varieties, is defined as the identity map when restricted to the component with \((n_2+1)\) in the index. Similarly, \(p_3''\) is defined as the identity map on the component with \((n_1+1)\) in the index.

Remark C.1.1

It is tempting at this point to generalize \(q_1^*:H^*_c(\mathfrak {M}_{\vec {r}}(n),\varphi )^\vee \rightarrow H^*_c(C_{\vec {r}}(n,n+1),\varphi )^\vee \) and similarly \(q_3^*\) to the correspondence where dimensions differ by 1. However, it is crucial that the potential function on \(C_{\vec {r}}(n, n+1)\) is the pullback of the potential function on \(\mathfrak {M}_{\vec {r}}(n)\), a fact that does not generalize to higher correspondences.

For simplicity, for any variety X, the structure map \(X\rightarrow \text {pt}\) is denoted by \(t_X.\) Composing \({\mathbb {D}}t_{\mathfrak {M}_{\vec {r}}(n+1)!}\), \(({{\,\mathrm{id}\,}}\rightarrow \eta _{3!}\eta _3^!)\), and \(({{\,\mathrm{id}\,}}\rightarrow b_{1*}b_1^*)\), we get a commutative diagram

We have \(t_{\mathfrak {M}_{\vec {r}}(n+1)!} \eta _{3!}=t_{\mathfrak {M}_{\vec {r}}(n+1)^A!} p_{3*}\). We compare \(t_{\mathfrak {M}_{\vec {r}}(n+1)^A!} p_{3*}\eta _3^!({{\,\mathrm{id}\,}}\rightarrow b_{1*}b_1^*)\) and \(t_{\mathfrak {M}_{\vec {r}}(n+1)^A!} ({{\,\mathrm{id}\,}}\rightarrow b_{3*}b_3^*)p_{3*}\eta _3^!\). By commutativity and Cartesian properties of (35), we have

$$\begin{aligned}&b_{3*}b_3^*p_{3*}\eta _3^!=b_{3*}b_3^{'*}p_3^{''*}p_{3*}''p_{3*}^{'}\eta _3^!\rightarrow b_{3*}b_3^{'*}p_{3*}'\eta _3^!=b_{3*}p_{2*}b_2^*\eta _3^!\\&=p_{3*}b_{2*}b_2^*\eta _3^!=p_{3*}b_{2*}\eta _2^!b_1^*=p_{3*}\eta _3^!b_{1*}b_1^*, \end{aligned}$$

we get a natural transform \((t_{\mathfrak {M}_{\vec {r}}(n+1)^A!} ({{\,\mathrm{id}\,}}\rightarrow b_{3*}b_3^*)p_{3*}\eta _3^!)\rightarrow (t_{\mathfrak {M}_{\vec {r}}(n+1)^A!} p_{3*}\eta _3^!({{\,\mathrm{id}\,}}\rightarrow b_{1*}b_1^*))\), which therefore gives a commutative diagram

This proves the commutativity of hyperbolic restrictions and pushforwards in the diagram (35).

Similarly, composing \({\mathbb {D}}t_{\mathfrak {M}_{\vec {r}}(n)!}\), \({{\,\mathrm{id}\,}}\rightarrow \eta _{1!}\eta _1^!\), and \((q_{1!}q_1^!\rightarrow {{\,\mathrm{id}\,}})\), we get a commutative square

We have \(t_{\mathfrak {M}_{\vec {r}}(n)!}\eta _{1!}=t_{\mathfrak {M}_{\vec {r}}(n)^A!}p_{1*}\). Now we compare \(p_{1*}\eta _1^!(q_{1!}q_1^!\rightarrow {{\,\mathrm{id}\,}})\) and \((q_{3!}q_3^!\rightarrow {{\,\mathrm{id}\,}})p_{1*}\eta _1^!\). As we have

$$\begin{aligned}&q_{3!}q_3^!p_{1*}\eta _1^!\rightarrow q_{3!}p_{2*}''p_2^{''!}q_3^!p_{1*}\eta _1^! =q_{3!}p_{2*}q_2^!\eta _1^!\\&=p_{1*}q_{2!}q_2^!\eta _1^! =p_{1*}q_{2!}\eta _2^!q_1^! =p_{1*}\eta _{1}^!q_{1!}q_1^!, \end{aligned}$$

we get a natural transform \((p_{1*}\eta _1^!(q_{1!}q_1^!\rightarrow {{\,\mathrm{id}\,}}))\rightarrow ((q_{3!}q_3^!\rightarrow {{\,\mathrm{id}\,}})p_{1*}\eta _1^!)\), which therefore gives a commutative diagram

This proves the commutativity of hyperbolic restrictions and pullbacks in the diagram (35).

1.2 C.2 The R-matrices

Using the correspondence

we have constructed the hyperbolic restriction map

$$\begin{aligned} h: V_{r_1, r_2, r_3} \rightarrow V_{r_1', r_2', r_3'} \otimes V_{r_1'', r_2'', r_3''}, \end{aligned}$$

where \((r_1, r_2, r_3)=(r_1', r_2', r_3')+(r_1'', r_2'', r_3'')\). Note that the map h depends on the torus A action \(t \mapsto A(t)\), \(t\in \mathbf{C}^*\). Consider the opposite action of A, that is, the action given by \(t \mapsto A(t^{-1})\), \(t\in \mathbf{C}^*\). This opposite action gives rise to another hyperbolic restriction map

$$\begin{aligned} h^{op}: V_{r_1, r_2, r_3} \rightarrow V_{r_1', r_2', r_3'} \otimes V_{r_1'', r_2'', r_3''}, \end{aligned}$$

which is an isomorphism after localization by the localization theorem in equivariant cohomology.

Similarly to [67], we define the R-matrix to be

$$\begin{aligned} h^{op}\circ h^{-1}: V_{r_1', r_2', r_3'} \otimes V_{r_1'', r_2'', r_3''} \rightarrow (V_{r_1', r_2', r_3'} \otimes V_{r_1'', r_2'', r_3''}). \end{aligned}$$

The geometrically defined R-matrix gives rise to a Yangian \({\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\) in the 3d case using the \(\hbox {RTT}=\hbox {TTR}\) formalism (see [67, Section 5.2] for details). In particular, \({\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\) is a subalgebra

$$\begin{aligned} {\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\subset \prod _{i_1,\ldots , i_n} \mathrm{End}(F_{i_1}(u_1)\otimes F_{i_2}(u_2)\cdots \otimes F_{i_n}(u_n)), \end{aligned}$$

where \(F_{i}\)’s form a family of representations, with each \(V_{r_1,r_2,r_3}\) for \((r_1, r_2, r_3)\in \mathbf{Z}_{\ge 0}^{3}\) being so that \(V_{r_1,r_2,r_3}\cong F_{i_1}(u_{i_1})\otimes \cdots \otimes F_{i_m}(u_{i_m})\) for some \(i_1,\ldots ,i_m\) [67, Section 5.2.14]. Here the parameters \(u_i\)’s are identified with the T-equivariant parameters in the definition of \(V_{r_1,r_2,r_3}\).

Lemma C.2.1

There is an algebra homomorphism \(\mathbf SH ^{\vec {c}}\rightarrow {\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\), such that the following diagram commutes.

Proof

The algebra \(\mathbf SH ^{\vec {c}}\) is generated by \(B_1, B_{-1}\) and \(\mathbf SH ^{\vec {c}, 0}\). To show \(\mathbf SH ^{\vec {c}}\) maps to \({\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\), we only need to show the actions of \(B_1, B_{-1}\) and \(\mathbf SH ^{\vec {c}, 0}\) on \(V_{\vec {r}}\) come from the Yangian, for any \(\vec {r}\in \mathbf{Z}_{\ge 0}^{3}\). By Sect. 6, the action of \(\mathbf SH ^{\vec {c}, 0}\) is given by the Chern classes of the tautological bundles, therefore, it lies in the Yangian. By step 1, the element \(B_1\) is primitive. Thus, to show that it lies in the image of of the map \({\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\rightarrow \mathrm{End}_{r\in \mathbf{Z}_{\ge 0}}(V_{\vec {r}})\), it suffices to prove this in the case when \(\vec {r}\) has two components being zero. In this 2d case, it is known that \(B_1\) is in the image of the map \({\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\rightarrow \mathrm{End}_{r\in \mathbf{Z}_{\ge 0}}(V_{\vec {r}})\) [11, Section 5.2]. Similar argument holds for \(B_{-1}\). \(\quad \square \)

Note that in particular, the generators of \(\mathbf SH ^{\vec {c}}\) are closed under the comultiplication on \({\mathbb {Y}}_{(Q_3^{fr}, W_3^{fr})}\) which in turn is induced by h. Denote this comultiplication by \(\Delta ^h\). In Section C.4 we will show \(\Delta ^h\) agrees with \(\varvec{\Delta }^{\vec {c}}\) from Proposition 8.2.2.

1.3 C.3 Dimensional reduction

Now we work with \(\vec {r}=(r_1,r_2,r_3)\) such that two of the three coordinates are zero. Without loss of generality, assume \(r_1=r\ne 0, r_2=r_3=0\). In this section, write \(X=\{(B_2,B_3,I_{23},J_{23}) \in {\mathcal {M}}_{\vec {r}}(n) \mid \mathbf{C}\langle B_2,B_3\rangle I_{23}(\mathbf{C}^{r_{23}})=\mathbf{C}^n \}/{{\,\mathrm{GL}\,}}_n\), and hence by the definition of stability conditions we have \(\mathfrak {M}_{\vec {r}}(n)=X\times \mathfrak {gl}_n\), endowed with a projection \(\pi _X:X\times \mathfrak {gl}_n\rightarrow X\). Following the notations as in [19], here we write \(Z\subset X\) be the locus consisting of orbits of \((B_2,B_3,I_{23},J_{23})\) where \({{\,\mathrm{tr}\,}}_W(B_k,I_{ij},J_{ij})_{k,i,j=1,2,3}=0\) for all \(B_1\in \mathfrak {gl}_n\), with the natural embedding \(i_Z:Z\rightarrow X\). Note that Z is isomorphic to the Nakajima quiver variety of dimension n and framing r.

Let \(A\subseteq {{\,\mathrm{GL}\,}}_r\) be such that \(\mathfrak {M}_{\vec {r}}(n)^A=\coprod _{n'+n''=n}\mathfrak {M}_{\vec {r'}}(n')\times \mathfrak {M}_{\vec {r''}}(n'')\). We focus on one component labeled by \(n'+n''=n\), and denote the fixed points loci and the attracting loci by \((X\times \mathfrak {gl}_n)^A\cong X^A\times {\mathfrak {l}}\), \(X^A\), \(Z^A\), \({\mathcal {A}}_{X\times \mathfrak {gl}_n}\cong {\mathcal {A}}_X\times {\mathfrak {p}}\), \({\mathcal {A}}_X\), \({\mathcal {A}}_Z\) respectively. We have the following diagram.

Here we introduce the variety

$$\begin{aligned} Y=\{(c, x, x^*)\mid c\in {\mathfrak {p}}, x\in {\mathfrak {l}}, x^*\in {\mathfrak {l}}\mid c_{{\mathfrak {l}}}=[x, x^*]\}, \end{aligned}$$

where \(c_{\mathfrak {l}}\in {\mathfrak {l}}\) is the projection of \(c\in {\mathfrak {p}}\) under the natural map \({\mathfrak {p}}\twoheadrightarrow {\mathfrak {l}}\). Under \({\mathfrak {p}}\cong {\mathfrak {n}}\oplus {\mathfrak {l}}\), we decompose c as \(c=c_{\mathfrak {l}}+c_{\mathfrak {n}}\), where \(c_{\mathfrak {n}}\) is the corresponding element in \({\mathfrak {n}}\). Note that we have the isomorphism \(Y\cong {\mathfrak {n}}\times {\mathfrak {l}}^2, (c, x, x^*)\mapsto (c_{\mathfrak {n}}, x, x^*)\). The maps are given by \(q'_X: {\mathcal {A}}_X\rightarrow Y, (x, x^*)\mapsto ([x, x^*], x_{{\mathfrak {l}}}, x^*_{{\mathfrak {l}}})\), \(d_Y: Y \rightarrow X^A, (c, x, x^*)\mapsto (x, x^*)\), and \(i_Y: Z^A\rightarrow Y, (x, x^*)\mapsto (0, x, x^*)\). It is straightforward to check that the square with \(i_Y\), \(q'_X\), \(q_Z\), and \(i_{{\mathcal {A}}_Z}\) is Cartesian. The maps cd are natural projections. Therefore, the square with c, \(\pi '_{X^A}\), \(q_X\), and \(\pi _{{\mathcal {A}}_X}\) is Cartesian; The two left squares are both Cartesian.

The following identities are easy to prove, using the commutativity of the diagrams and the Cartesian properties liste above, as well as Lemma 8.3.1.

$$\begin{aligned} q_{Z!}j_Z^*i_Z^*= & {} i_Y^*q'_!j_X^* \end{aligned}$$
(36)
$$\begin{aligned} q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}\pi _X^*= & {} d_!d^*\pi ^*_{X^A}q_{X!}j_X^* \end{aligned}$$
(37)
$$\begin{aligned} i^*_{Z^A}q_{X!}= & {} i^*_{Z^A}d_{Y!}q'_!=i^{*}_Yd_Y^*d_{Y!}q'_! \end{aligned}$$
(38)
$$\begin{aligned} \pi _{X^A!}q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}= & {} q_{X!}j_X^*\pi _{X!} \end{aligned}$$
(39)
$$\begin{aligned} i_{Z^A*}q_{Z!}j_Z^*= & {} q_{X!}j_X^*i_{Z*} \end{aligned}$$
(40)

We have the dimensional reduction \(\pi _{X!}\pi _X^!i_{Z*}i_Z^*=\pi _{X!}\varphi _{{{\,\mathrm{tr}\,}}W}\pi _X^*\) and \(\pi _{X^A!}\pi _{X^A}^!i_{Z^A*}i_{Z^A}^*=\pi _{X^A!}\varphi _{{{\,\mathrm{tr}\,}}W}\pi _{X^A}^*\).

We write \(\mathfrak {g}=\mathfrak {gl}_n\) for short. We have the natural isomorphisms of functors

$$\begin{aligned}&q_{X!}j_X^*\pi _{X!}\varphi \pi _X^*=\pi _{X^A!}q_{X\times \mathfrak {g}!}j_{X\times \mathfrak {g}}^*\varphi \pi _X^*=\pi _{X^A!}\varphi q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n} \pi _X^*\\&\quad =\pi _{X^A!}\varphi d_!d^*\pi ^*_{X^A}q_{X!}j_X^*\rightarrow \pi _{X^A!}\varphi \pi ^*_{X^A}q_{X!}j_X^*, \end{aligned}$$

with the equalities given by (39), Lemma 8.3.4, and (37) respectively. Here we apply Lemma 8.3.4 to the setting when A is the opposite 1-dimensional subgroup, and then use [10, Theorem 1] to identify the hyperbolic localization functors of Lemma 8.3.4 in that setting with the functors \(q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}\) and \(q_{X\times \mathfrak {g}!}j_{X\times \mathfrak {g}}^*\) used here. We also have

$$\begin{aligned}&q_{X!}j_X^*\pi _{X!}\pi _{X}^*i_{Z*}i_Z^*=\pi _{X^A!}q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}\pi _{X}^*i_{Z*}i_Z^*=\pi _{X^A!}d_!d^*\pi ^*_{X^A}q_{X!}j_X^*i_{Z*}i_Z^*\\ \rightarrow&\pi _{X^A!}\pi ^*_{X^A}q_{X!}j_X^*i_{Z*}i_Z^* =\pi _{X^A!}\pi ^*_{X^A}i_{Z^A*}q_{Z!}j_Z^*i_Z^*=\pi _{X^A!}\pi ^*_{X^A}i_{Z^A*}i_Y^*q'_!j_X^* \\ \rightarrow&\pi _{X^A!}\pi ^*_{X^A}i_{Z^A*}i_{Z^A}^*d_Y^*d_{Y!}q'_!j_X^*=\pi _{X^A!}\pi ^*_{X^A}i_{Z^A*}i^*_{Z^A}q_{X!}j_X^* \end{aligned}$$

with the equalities given by (39), (37), (40), (36), (38) respectively.

Lemma C.3.1

The following diagram is commutative.

(41)

with the vertical arrows the dimensional reductions, and horizontal arrows given as above.

Proof

We follow a similar strategy as in [19, Section A1], and by the same construction as in loc. cit. we have \({\tilde{i}}_{Z}\), \({\tilde{i}}_{{\mathcal {A}}_Z}\), and \({\tilde{i}}_{Z^A}\), with the natural transforms \(\pi _{X!}{\tilde{i}}_{Z*}{\tilde{i}}_Z^*\varphi _{{{\,\mathrm{tr}\,}}W}\pi _X^*\rightarrow \pi _{X!}{\tilde{i}}_{Z*}{\tilde{i}}_Z^*\pi _X^*\), and \(\pi _{X^A!}{\tilde{i}}_{Z^A*}{\tilde{i}}_{Z^A}^*\varphi _{{{\,\mathrm{tr}\,}}W}\pi _{X^A}^*\rightarrow \pi _{X^A!}{\tilde{i}}_{Z^A*}{\tilde{i}}_{Z^A}^*\pi _{X^A}^*\) being isomorphisms. Starting with \(q_{X!}j_X^*\) composed with \(\pi _{X!}{\tilde{i}}_{Z*}{\tilde{i}}_Z^*\varphi _{{{\,\mathrm{tr}\,}}W}\pi _X^*\rightarrow \pi _{X!}{\tilde{i}}_{Z*}{\tilde{i}}_Z^*\pi _X^*\), using (4) we get

which is a commutative square of natural isomorphisms. Then by [19, Lemma A.4] and Lemma 8.3.4, we get a natural isomorphism

$$\begin{aligned} \pi _{X^A!}\varphi _{{{\,\mathrm{tr}\,}}W}q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}\pi _X^*\rightarrow \pi _{X^A!}q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}{\tilde{i}}_{Z*}{\tilde{i}}_Z^*\varphi _{{{\,\mathrm{tr}\,}}W}\pi _X^*, \end{aligned}$$
(42)

which composes to

$$\begin{aligned} \pi _{X^A!}\varphi _{{{\,\mathrm{tr}\,}}W}q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}\pi _X^*\rightarrow \pi _{X^A!}q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}{\tilde{i}}_{Z*}{\tilde{i}}_Z^*\pi _X^.. \end{aligned}$$
(43)

Similarly, starting with \(\pi _{X^A!}\varphi _{{{\,\mathrm{tr}\,}}W}\pi _{X^A}^*\rightarrow \pi _{X^A!}{\tilde{i}}_{Z^A*}{\tilde{i}}_{Z^A}^*\varphi _{{{\,\mathrm{tr}\,}}W}\pi _{X^A}^*\rightarrow \pi _{X^A!}{\tilde{i}}_{Z^A*}{\tilde{i}}_{Z^A}^*\pi _{X^A}^*\) composed with \(q_{X!}j_X^!\), and use (2) we get a commutative diagram

(44)

Now using the analogues of (3), (1), and (5), we get a natural map

$$\begin{aligned} \pi _{X^A!}{\tilde{i}}_{Z^A*}{\tilde{i}}_{Z^A}^*q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}\pi _X^*\rightarrow \pi _{X^A!}q_{X\times \mathfrak {gl}_n!}j^*_{X\times \mathfrak {gl}_n}{\tilde{i}}_{Z*}{\tilde{i}}_Z^*\pi _X^*.\end{aligned}$$

Its composition with the right vertical map in (44) gives the same map as (43), due to the naturality of the transforms \({{\,\mathrm{id}\,}}\rightarrow {\tilde{i}}_{Z*}{\tilde{i}}_Z^*\) and \(\varphi _{{{\,\mathrm{tr}\,}}_W}\rightarrow {{\,\mathrm{id}\,}}\). \(\blacksquare \)

Composing \({\mathbb {D}}t_{X!}\), \({{\,\mathrm{id}\,}}\rightarrow j_{X!}j_X^!\), and \(\pi _{X!}\pi _X^!i_{Z*}i_Z^*=\pi _{X!}\varphi _{{{\,\mathrm{tr}\,}}W}\pi _X^*\), we get the commutative square

where the left vertical arrow gives the map of Braverman, Finkelberg, and Nakajima [11, (5.6.4)], and the right vertical arrow gives h. Applying the natural isomorphism of functors \(t_{X!}j_{X!}j_X^!=t_{X^A!}q_{X!}j_X^*\), we get the commutative square

Combining this with Lemma C.3.1, this shows that the hyperbolic localization h defined here is compatible with th hyperbolic localization of Braverman, Finkelberg, and Nakajima [11, (5.6.4)] under the dimensional reduction. The later is in turn known [11, Theorem 1.6.1.(2) and Section 5.6] to be equal to the stable envelope of Maulik and Okounkov [67, 72, 93]. Therefore, in particular, \(\Delta ^h\) agrees with \(\varvec{\Delta }^{\vec {c}}\) when specialized to \(\mathbf SH ^{\mathbf{c}^{k}}\), \(k=1, 2, 3\). \(\quad \square \)

1.4 C.4 Concluding the proofs

By the definition of the central extended algebras, for each \(k=1,2,3\), there is a specialization map \(\mathbf SH ^{\vec {c}}\rightarrow \mathbf SH ^{\mathbf{c}^{(k)}}\), with \(\mathbf SH ^{\mathbf{c}^{(k)}}\) isomorphic to the algebra \(\mathbf SH ^{\mathbf{c}}\) defined in [93]. The direct sum of these three specialization maps embeds the algebra \(\mathbf SH ^{\vec {c}}\) into \( \bigoplus _{k=1, 2, 3}\mathbf SH ^{\mathbf{c}^{(k)}}\). Moreover, this embedding fits into the upper part of the following diagram.

In other words, \(\mathbf SH ^{\vec {c}}\) is characterized as the universal central extension of \(\mathbf SH \), which specializes into \(\mathbf SH ^{\mathbf{c}^{(k)}}\) for each \(k=1,2,3\).

From the formula of \(\Delta ^{\vec {c}}\) on the generators of \(\mathbf SH ^{\vec {c}}\) in Proposition 8.2.2 specializes to \(\Delta ^{\mathbf{c}^{(k)}}: \mathbf SH ^{\mathbf{c}^{(k)}}\rightarrow (\mathbf SH ^{\mathbf{c}^{(k)}})^{\otimes 2}\) by specializing \(\mathbf{c}^{(k')}\mapsto 0\), for \(1\le k\ne k'\le 3\). These three maps \(\Delta ^{\mathbf{c}^{(k)}}\) are well-defined algebra homomorphisms, which agree on the specialization \(\mathbf SH \). Therefore, by the aforementioned universal property, \(\Delta ^{\vec {c}}\) given in Proposition 8.2.2 is a well-defined algebra homomorphism. By the same universal property, \(\Delta ^{\vec {c}}\) is coassociative. This in particular proves Proposition 8.2.2.

To prove Proposition 8.3.6, it suffices to prove the commutativity of the left part of the following diagram of the actions of \(\mathbf SH ^{\vec {c}}\).

where \(W: = (\oplus _{r_1} V_{r_1, 0, 0})\bigoplus (\oplus _{r_2} V_{0, r_2, 0})\bigoplus (\oplus _{r_3} V_{0, 0, r_3})\). By definition, \(\Delta ^h\) from Section C.2 automatically makes the entire diagram commutative. Therefore we need to show that \(\Delta ^h\) agrees with \(\Delta ^{\vec {c}}\). By Section C.3, \(\Delta ^{\vec {c}}\) makes the lower square (containing \(\Delta ^{\vec {c}}\) and \(h_W\)) commutative. Thus, \(\Delta ^{\vec {c}}\) and \(\Delta ^h\) agree when restricting on \(\mathbf SH ^{\mathbf{c}^{k}}\), \(k=1, 2, 3\). By the same argument as above, \(\Delta ^{\vec {c}}\) is determined by the three specializations \(\Delta ^{\mathbf{c}^{(k)}}, k=1, 2, 3\). Therefore, \(\Delta ^{\vec {c}}\) and \(\Delta ^h\) agree.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapčák, M., Soibelman, Y., Yang, Y. et al. Cohomological Hall Algebras, Vertex Algebras and Instantons. Commun. Math. Phys. 376, 1803–1873 (2020). https://doi.org/10.1007/s00220-019-03575-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-019-03575-5

Navigation