Skip to main content
Log in

Modified Macdonald Polynomials and Integrability

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We derive combinatorial formulae for the modified Macdonald polynomial \(H_{\lambda }(x;q,t)\) using coloured paths on a square lattice with quasi-cylindrical boundary conditions. The derivation is based on an integrable model associated to the quantum group of \(U_{q}(\widehat{sl_{n+1})}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our definition differs from the definition of [25] by the inversion of t and the factor \(t^{n(\lambda )}\).

  2. The symmetry in \(x_1,\ldots ,x_N\) follows from the RLL equation satisfied by the weights (59) and the weights of the fused R-matrix (not given in this paper).

  3. This boundary condition does not apply to the paths of colour i in the column i.

  4. In order to match the data given by the partitions \(\nu _{i,j}\) and the lattice paths recall (98) and the relation between the indices \(\sigma \) and \(\nu \).

  5. In Sect. 4 we denoted this matrix \({\mathcal {L}}^{\lambda ,\mu }_{\lambda ',\mu '}(x,z)\).

References

  1. Assaf, S.H.: Dual equivalence graphs, ribbon tableaux and Macdonald polynomials, University of California, Berkeley thesis (2007)

  2. Assaf, S.H.: Dual equivalence graphs and a combinatorial proof of LLT and Macdonald positivity, arXiv:1005.3759 (2010)

  3. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc., London (1982)

    Google Scholar 

  4. Bazhanov, V.V., Lukyanov, S.L., Zamolodchikov, A.B.: Integrable structure of conformal field theory III. The Yang–Baxter relation. Commun. Math. Phys. 200, 297–324 (1999)

    Google Scholar 

  5. Blasiak, J.: Haglund’s conjecture on 3-column Macdonald polynomials. Math. Z. 283, 601–628 (2016)

    Google Scholar 

  6. Bosnjak, G., Mangazeev, V.V.: Construction of \(R\)-matrices for symmetric tensor representations related to \(U_q(\widehat{sl_n})\). J. Phys. A Math. Theor. 49, 495204 (2016)

    Google Scholar 

  7. Mangazeev, V.V., Bazhanov, V.V., Sergeev, S.M.: An integrable 3D lattice model with positive Boltzmann weights. J. Phys. A Math. Theor. 46, 465206 (2013)

    Google Scholar 

  8. Borodin, A.: On a family of symmetric rational functions. Adv. Math. 306, 973–1018 (2017)

    Google Scholar 

  9. Borodin, A., Petrov, L.: Higher spin six vertex model and symmetric rational functions, Sel. Math. 24 (2018), 751–874; arXiv:1601.05770

  10. Borodin, A., Wheeler, M.: Spin \(q\)-Whittaker polynomials, arXiv:1701.06292 (2017)

  11. Cantini, L., de Gier, J., Wheeler, M.: Matrix product formula for Macdonald polynomials, J. Phys. A: Math. Theor. 48 (2015), 384001; arXiv:1505.00287

  12. Cherednik, I.: Double affine Hecke algebras and Macdonald’s conjectures. Ann. Math. 141, 191–216 (1995)

    Google Scholar 

  13. Cherednik, I.: Nonsymmetric Macdonald polynomials. Int. Math. Res. Not. 10, 483–515 (1995)

    Google Scholar 

  14. Corwin, I., Petrov, L.: Stochastic higher spin vertex models on the line, Commun. Math. Phys. 343 (2016), 651–700; arXiv:1502.07374

  15. Désarménien, J., Leclerc, B., Thibon, J.-Y.: Hall–Littlewood functions and Kostka–Foulkes polynomials in representation theory. Sém. Loth. Comb. 32, 38 (1994)

    Google Scholar 

  16. Drinfeld, V.G.: Quantum groups, Proc. ICM-86 (Berkeley, USA) vol. 1, Amer. Math. Soc. (1987), 798–820

  17. Faddeev, L.D.: Quantum completely integrable models in field theory. In: Problems of Quantum Field Theory, R2-12462, Dubna (1979), pp. 249–299

  18. Faddeev, L.D.: Quantum completely integrable models in field theory. In: Contemp. Math. Phys., Vol. IC (1980), pp. 107–155

  19. Garbali, A., de Gier, J., Wheeler, M.: A new generalisation of Macdonald polynomials. Commun. Math. Phys. 352 (2017), 773–804; arXiv:1605.07200

  20. Garsia, A. M., Haiman, M.: Some Natural Bigraded \(S_n\)-Modules and \(q,t\)-Kostka Coefficients

  21. Gasper, G., Rahman, M.: Basic Hypergeometric Series, vol. 96. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  22. Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials, J. Am. Math. Soc. 18 (2005), 735–761; arXiv:math/0409538

  23. Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for non-symmetric Macdonald polynomials, Am. J. Math. 130 (2008), 359–383; arXiv:math/0601693

  24. Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14, 941–1006 (2001)

    Google Scholar 

  25. Haiman, M.: Combinatorics, symmetric functions, and Hilbert schemes. Curr. Dev. Math. 39–111, (2002)

  26. Hatayama, G., Kirillov, A.N., Kuniba, A., Okado, M., Takagi, T., Yamada, Y.: Character formulae of \(\hat{sl}_n\)-modules and inhomogeneous paths. Nucl. Phys. B 536, 575–616 (1998)

    Google Scholar 

  27. Jimbo, M.: A \(q\)-analogue of \(U(gl(N+1))\), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11, 247–252 (1986)

    Google Scholar 

  28. Kasatani, M., Takeyama, Y.: The quantum Knizhnik–Zamolodchikov equation and non-symmetric Macdonald polynomials, Funkcialaj ekvacioj. Ser. Internacia 50 (2007), 491–509; arXiv:math/0608773

  29. Kostka, C.: Über den Zusammenhang zwischen einigen Formen von symmetrischen Functionen. Journal für die reine und angewandte Mathematik 93, 89–123 (1882)

    Google Scholar 

  30. Korff, C.: Cylindric versions of specialised Macdonald polynomials and a deformed Verlinde algebra. Commun. Math. Phys. 318, 173–246 (2013)

    Google Scholar 

  31. Kirillov, A.N.: New combinatorial formula for modified Hall–Littlewood polynomials, arXiv:math/9803006 (1998)

  32. Kirillov, A.N.: Ubiquity of Kostka polynomials. Physics and Combinatorics 85–200, (2001)

  33. Kirillov, A.N., Reshetikhin, N.Y.: Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum. J. Phys. A Math. Gen. 20, 1565 (1987)

    Google Scholar 

  34. Kirillov, A.N., Reshetikhin, NYu.: Bethe, The, ansatz and the combinatorics of Young tableaux, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 155, : 65–115. English translation in J. Soviet Math. 41(1988), 916–924 (1986)

  35. Kulish, P.P., Yu Reshetikhin, N., Sklyanin, E.K.: Yang–Baxter equation and representation theory I. Lett. Math. Phys. 5, 393–403 (1981)

    Google Scholar 

  36. Kuniba, A., Mangazeev, V.V., Maruyama, S., Okado, M.: Stochastic \(R\) matrix for \(U_q(A^{(1)}_n)\). Nucl. Phys. B 913 (2016), 248–277; arXiv:1604.08304

  37. Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38, 1041–1068 (1997)

    Google Scholar 

  38. Lascoux, A., Schützenberger, M.-P.: Sur une conjecture de H. O. Foulkes, Comptes Rendus Acad. Sci. Paris Sér. A-B 286 (1978), A323–A324

  39. Lascoux, A., Warnaar, S.E.: Branching rules for symmetric functions and \(\mathfrak{sl}_n\) basic hypergeometric series. Adv. Appl. Math. 46, 424–456 (2011)

    Google Scholar 

  40. Macdonald, I.: A new class of symmetric functions, Publ. I.R.M.A. Strasbourg 372 (1988), 131–171

  41. Macdonald, I.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    Google Scholar 

  42. Mangazeev, V.: On the Yang–Baxter equation for the six-vertex model. Nucl. Phys. B 882, 70–96 (2014)

    Google Scholar 

  43. Mangazeev, V.: Q-operators in the six-vertex model. Nucl. Phys. B 886, 166–184 (2014)

    Google Scholar 

  44. Opdam, E.: Harmonic analysis for certain representations of graded Hecke algebras. Acta Math. 175, 75–121 (1995)

    Google Scholar 

  45. Povolotsky, A.M.: On the integrability of zero-range chipping models with factorized steady states. J. Phys. A Math. Theor. 46, 465205 (2013)

    Google Scholar 

  46. Reshetikhin, N.Y.: Multi-parameter quantum groups and twisted quasi-triangular Hopf algebras. Lett. Math. Phys. 20, 331–335 (1990)

    Google Scholar 

  47. Stembridge, J.R.: Some particular entries of the two-parameter Kostka matrix. Proc. Am. Math. Soc. 121, 367–373 (1994)

    Google Scholar 

  48. Tsilevich, N.V.: Quantum inverse scattering method for the \(q\)-boson model and symmetric functions. Funct. Anal. Appl. 40, 207–217 (2006)

    Google Scholar 

  49. Wheeler, M., Zinn-Justin, P.: Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons, 299 (2016), 543–600; arXiv:1508.02236

  50. Zamolodchikov, A.B., Zamolodchikov, A.I.B.: Two-dimensional factorizable S-matrices as exact solutions of some quantum field theory models. Ann. Phys. 120, 253–291 (1979)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), and MW acknowledges support by an Australian Research Council DECRA. We thank the program Non-equilibrium systems and special functions held at the MATRIX institute in Creswick, where part of this work was completed. We would like to thank Alexei Borodin, Jan de Gier, Atsuo Kuniba, Vladimir Mangazeev, Ole Warnaar and Paul Zinn-Justin for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Garbali.

Additional information

Communicated by A. Borodin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbali, A., Wheeler, M. Modified Macdonald Polynomials and Integrability. Commun. Math. Phys. 374, 1809–1876 (2020). https://doi.org/10.1007/s00220-020-03680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03680-w

Navigation