Skip to main content
Log in

Melonic Turbulence

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We propose a new application of random tensor theory to studies of non-linear random flows in many variables. Our focus is on non-linear resonant systems which often emerge as weakly non-linear approximations to problems whose linearized perturbations possess highly resonant spectra of frequencies (non-linear Schrödinger equations for Bose–Einstein condensates in harmonic traps, dynamics in Anti-de Sitter spacetimes, etc). We perform Gaussian averaging both for the tensor coupling between modes and for the initial conditions. In the limit when the initial configuration has many modes excited, we prove that there is a leading regime of perturbation theory governed by the melonic graphs of random tensor theory. Restricting the flow equation to the corresponding melonic approximation, we show that at least during a finite time interval, the initial excitation spreads over more modes, as expected in a turbulent cascade. We call this phenomenon melonic turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. The constant K can be exactly computed see, e.g., [4].

  2. This point, although fundamental, is often confusing. As a clarification, the reader may be reminded that the Gaussian measure with covariance 0 on \({\mathbb R}\)is the Dirac measure \(\delta (x)\) implementing the constraint \(x=0\); the Gaussian measure on \({{\mathbb {R}}^2}\) with covariance \(\begin{pmatrix}1&{}1\\ 1&{}1\end{pmatrix}\) is proportional to \(e^{-x^2/2}\delta (x-y)\) implementing the constraint \(x=y\); so Gaussian measures can implement constraints. The choice of the Gaussian measure with covariance (11) implements the desired symmetry constraints (7) on C.

  3. We could also consider an equidistribution with cutoff N, hence where \(\chi _N (j) = 1 \) if \(0 \le j \le N-1\) and \(\chi _N (j) = 0 \) if \(j>N\). This is the simplest distribution for a 1/N expansion. The precise form of the \(\chi \) function is not important for what will follow; however it is important to consider the \(N \rightarrow \infty \) regime in which many modes are excited at \(t=0\).

  4. Note that for the leaves it is the only incident (dashed) edge.

  5. It is convenient to draw trees with counterclockwise labeling of edges around the vertices and anti-trees with the opposite clockwise ordering of edges around vertices, but this is not essential. It is the convention we adopt in the figures of the paper.

  6. We stress however that in this amputated representation, the root (which also has valency one), is still represented as a vertex and does not bring any \(\alpha \) or \({\bar{\alpha }}\) factor.

  7. The resonance condition at each vertex is indeed reminiscent of energy-momentum conservation.

  8. It could be easily improved but there is little point in doing that until we get a better picture of the constructive aspects of the full model (not just the melonic approximation) at finite N (i.e., at p bounded away from 1).

  9. This is typical of QFT-like expansions, from which one typically expects at best some kind of Borel summability, depending on the stability properties at \(t=0\) of the particular model considered [87].

  10. This blow up behavior would hopefully be universal for a large class of such models, being an analog of some susceptibility in the quantum gravity context.

  11. Note that in the figures, with the present convention, the ordering of the half-edges around the vertices might need to be inverted, depending on whether the vertices belong to the tree or anti-tree part of U.

  12. By corner, we refer to the arc which links two paired strands inside an 8-valent node.

  13. In the sense that we can classify the graphs by grouping those whose amplitudes have the same dependence in N, and because the dependence in N is bounded from above, this classification is in non-negative powers of 1/N, up to a global rescaling. Note that to have a formal expansion in 1/N, one should also show that the sums \({\bar{S}}_{\gamma , \omega }(t)\) of the amplitudes for the graphs of any given group (i.e. graphs for which the dependence in N is the same) is finite in a certain interval of time.

  14. For a graph G, we thus have \(\omega (G) \ge d(G)\).

References

  1. Wishart, J.: Generalized product moment distribution in samples. Biometrika 20A, 32 (1928)

    Google Scholar 

  2. Wigner, E.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548 (1955)

    Google Scholar 

  3. Dyson, F.: Correlations between eigenvalues of a random matrix. Commun. Math. Phys. 19, 235 (1970)

    Google Scholar 

  4. Majumdar, S., Schehr, G.: Top eigenvalue of a random matrix: large deviations and third order phase transition. J. Stat. Mech. (2014). https://doi.org/10.1088/1742-5468/2014/01/P01012. arXiv:1311.0580

    Google Scholar 

  5. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)

    Google Scholar 

  6. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2-D gravity and random matrices. Phys. Rep. 254, 1 (1995). arXiv:hep-th/9306153

    Google Scholar 

  7. May, R.M.: Will a large complex system be stable? Nature 238, 413 (1972)

    Google Scholar 

  8. May, R.M.: Stability and complexity in model ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  9. Allesina, S., Tang, S.: The stability/complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63 (2015)

    Google Scholar 

  10. Chen, X., Shiu, G., Sumitomo, Y., Tye, S.H.H.: A global view on the search for de-Sitter Vacua in (type IIA) string theory. JHEP 1204, 026 (2012). arXiv:1112.3338 [hep-th]

    Google Scholar 

  11. Dine, M.: Classical and quantum stability in putative landscapes. JHEP 1701, 082 (2017). arXiv:1512.08125 [hep-th]

    Google Scholar 

  12. Ambjørn, J., Durhuus, B., Jonsson, T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6, 1133 (1991)

    Google Scholar 

  13. Sasakura, N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)

    Google Scholar 

  14. Gross, M.: Tensor models and simplicial quantum gravity in \(>2\)-D. Nucl. Phys. Proc. Suppl. 25A, 144 (1992)

    Google Scholar 

  15. Ambjørn, J.: Simplicial Euclidean and Lorentzian Quantum Gravity. arXiv:gr-qc/0201028

  16. Gurau, R.: The \(1/N\) expansion of colored tensor models. Ann. Henri Poincaré 12, 829 (2011). arXiv:1011.2726

    Google Scholar 

  17. Gurau, R., Rivasseau, V.: The \(1/N\) expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). arXiv:1101.4182

    Google Scholar 

  18. Gurau, R.: The complete \(1/N\) expansion of colored tensor models in arbitrary dimension. Ann. Henri Poincaré 13, 399 (2012). arXiv:1102.5759

    Google Scholar 

  19. Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011). arXiv:1105.3122 [hep-th]

    Google Scholar 

  20. Gurau, R.: Colored group field theory. Commun. Math. Phys. 304, 69 (2011)

    Google Scholar 

  21. Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8, 020 (2012)

    Google Scholar 

  22. Gurau, R.: Random tensors. Oxford University Press (2016)

  23. Gurau, R.: Tensor models, formalism and applications. SIGMA special issue (2016)

  24. Gurau, R.: Universality for random tensors. Ann. Inst. Henri Poincare Probab. Stat. 50, 1474 (2014). arXiv:1111.0519 [math.PR]

    Google Scholar 

  25. Benedetti, D., Carrozza, S., Gurau, R., Kolanowski, M.: The \(1/N\) expansion of the symmetric traceless and the antisymmetric tensor models in rank three. arXiv:1712.00249 [hep-th]

  26. Carrozza, S.: Large \(N\) limit of irreducible tensor models: \(O(N)\) rank-\(3\) tensors with mixed permutation symmetry. JHEP 1806, 039 (2018). arXiv:1803.02496 [hep-th]

    Google Scholar 

  27. Carrozza, S., Pozsgay, V.: SYK-like tensor quantum mechanics with \({\rm Sp}(N)\) symmetry. arXiv:1809.07753 [hep-th]

  28. Bonzom, V., Lionni, L., Rivasseau, V.: Colored triangulations of arbitrary dimensions are stuffed walsh maps. Electron. J. Comb. 24(1), P1.56 (2017). arXiv:1508.03805 [math.CO]

    Google Scholar 

  29. Lionni, L., Thürigen, J.: Multi-critical behaviour of 4-dimensional tensor models up to order 6. arXiv:1707.08931 [hep-th]

  30. Ferrari, F., Rivasseau, V., Valette, G.: A new large \(N\) expansion for general matrix-tensor models. arXiv:1709.07366 [hep-th]

  31. Geloun, J.B., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69 (2013). arXiv:1111.4997 [hep-th]

    Google Scholar 

  32. Geloun, J.B.: Renormalizable models in rank \(d\ge 2\) tensorial group field theory. Commun. Math. Phys. 332, 117 (2014). arXiv:1306.1201 [hep-th]

    Google Scholar 

  33. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of a SU(2) tensorial group field theory in three dimensions. Commun. Math. Phys. 330, 581 (2014). arXiv:1303.6772 [hep-th]

    Google Scholar 

  34. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of tensorial group field theories: abelian U(1) models in four dimensions. Commun. Math. Phys. 327, 603 (2014). arXiv:1207.6734 [hep-th]

    Google Scholar 

  35. Tanasa, A.: Multi-orientable group field theory. J. Phys. A 45, 165401 (2012). arXiv:1109.0694

    Google Scholar 

  36. Carrozza, S.: Flowing in group field theory space: a review. SIGMA 12, 070 (2016). arXiv:1603.01902 [gr-qc]

    Google Scholar 

  37. Krajewski, T., Toriumi, R.: Exact renormalisation group equations and loop equations for tensor models. SIGMA 12, 068 (2016). arXiv:1603.00172 [gr-qc]

    Google Scholar 

  38. Gurau, R.: The 1/N expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330, 973 (2014). arXiv:1304.2666 [math-ph]

    Google Scholar 

  39. Rivasseau, V.: Constructive tensor field theory. SIGMA 12, 085 (2016). arXiv:1603.07312 [math-ph]

    Google Scholar 

  40. Kitaev, A.: “A Simple Model of Quantum Holography,” KITP Program “Entanglement in Strongly-Correlated Quantum Matter,” unpublished, see http://online.kitp.ucsb.edu/online/entangled15

  41. Polchinski, J., Rosenhaus, V.: The spectrum in the Sachdev–Ye–Kitaev model. JHEP 1604, 001 (2016). arXiv:1601.06768 [hep-th]

    Google Scholar 

  42. Maldacena, J., Stanford, D.: Remarks on the Sachdev–Ye–Kitaev model. Phys. Rev. D 94, 106002 (2016). arXiv:1604.07818 [hep-th]

    Google Scholar 

  43. Witten, E.: An SYK-Like Model Without Disorder. arXiv:1610.09758 [hep-th]

  44. Gurau, R.: The complete \(1/N\) expansion of a SYK-like tensor model. Nucl. Phys. B 916, 386 (2017). arXiv:1611.04032 [hep-th]

    Google Scholar 

  45. Carrozza, S., Tanasa, A.: \(O(N)\) random tensor models. Lett. Math. Phys. 106, 1531 (2016). arXiv:1512.06718 [math-ph]

    Google Scholar 

  46. Dartois, S., Rivasseau, V., Tanasa, A.: The 1/N expansion of multi-orientable random tensor models. Ann. Henri Poincare 15, 965 (2014). arXiv:1301.1535 [hep-th]

    Google Scholar 

  47. Klebanov, I.R., Tarnopolsky, G.: Uncolored random tensors, melon diagrams, and the Sachdev–Ye–Kitaev models. Phys. Rev. D 95, 046004 (2017). arXiv:1611.08915 [hep-th]

    Google Scholar 

  48. Ferrari, F.: The Large D Limit of Planar Diagrams. arXiv:1701.01171 [hep-th]

  49. Azeyanagi, T., Ferrari, F., Massolo, F.I.S.: Phase diagram of planar matrix quantum mechanics, tensor, and Sachdev–Ye–Kitaev models. Phys. Rev. Lett. 120, 061602 (2018). arXiv:1707.03431 [hep-th]

    Google Scholar 

  50. Azeyanagi, T., Ferrari, F., Gregori, P., Leduc, L., Valette, G.: More on the new large \(D\) limit of matrix models. Ann. Phys. 393, 308 (2018). arXiv:1710.07263 [hep-th]

    Google Scholar 

  51. Bohigas, O., Flores, J.: Two-body random Hamiltonian and level density. Phys. Lett. 34B, 261 (1971)

    Google Scholar 

  52. Bohigas, O., Flores, J.: Spacing and individual eigenvalue distributions of two-body random Hamiltonians. Phys. Lett. 35B, 383 (1971)

    Google Scholar 

  53. French, J.B., Wong, S.S.M.: Validity of random matrix theories for many-particle systems. Phys. Lett. 33B, 449 (1970)

    Google Scholar 

  54. French, J.B., Wong, S.S.M.: Some random-matrix level and spacing distributions for fixed-particle-rank interactions. Phys. Lett. 35B, 5 (1971)

    Google Scholar 

  55. Kota, V.K.B.: Embedded Random Matrix Ensembles in Quantum Physics. Springer, Berlin (2014)

    Google Scholar 

  56. Evnin, O., Piensuk, W.: Quantum resonant systems, integrable and chaotic. arXiv:1808.09173 [math-ph]

  57. Balasubramanian, V., Buchel, A., Green, S.R., Lehner, L., Liebling, S.L.: Holographic thermalization, stability of anti-de Sitter space, and the Fermi–Pasta–Ulam paradox. Phys. Rev. Lett. 113, 071601 (2014). arXiv:1403.6471 [hep-th]

    Google Scholar 

  58. Craps, B., Evnin, O., Vanhoof, J.: Renormalization group, secular term resummation and AdS (in)stability. JHEP 1410, 48 (2014). arXiv:1407.6273 [gr-qc]

    Google Scholar 

  59. Craps, B., Evnin, O., Vanhoof, J.: Renormalization, averaging, conservation laws and AdS (in)stability. JHEP 1501, 108 (2015). arXiv:1412.3249 [gr-qc]

    Google Scholar 

  60. Bizoń, P., Maliborski, M., Rostworowski, A.: Resonant dynamics and the instability of anti-de Sitter spacetime. Phys. Rev. Lett. 115, 081103 (2015). arXiv:1506.03519 [gr-qc]

    Google Scholar 

  61. Bizoń, P., Craps, B., Evnin, O., Hunik, D., Luyten, V., Maliborski, M.: Conformal flow on \(S^3\) and weak field integrability in AdS\(_4\). Commun. Math. Phys. 353, 1179 (2017). arXiv:1608.07227 [math.AP]

    Google Scholar 

  62. Bizoń, P., Hunik-Kostyra, D., Pelinovsky, D.: Ground state of the conformal flow on \({\mathbb{S}}^3\). arXiv:1706.07726 [math.AP]

  63. Craps, B., Evnin, O., Luyten, V.: Maximally rotating waves in AdS and on spheres. JHEP 1709, 059 (2017). arXiv:1707.08501 [hep-th]

    Google Scholar 

  64. Bizoń, P., Hunik-Kostyra, D., Pelinovsky, D.: Stationary states of the cubic conformal flow on \({\mathbb{S}}^3\). arXiv:1807.00426 [math-ph]

  65. Bizoń, P., Rostworowski, A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011). arXiv:1104.3702 [gr-qc]

    Google Scholar 

  66. Germain, P., Hani, Z., Thomann, L.: On the continuous resonant equation for NLS: I. Deterministic analysis. J. Math. Pure Appl. 105, 131 (2016). arXiv:1501.03760 [math.AP]

    Google Scholar 

  67. Germain, P., Thomann, L.: On the high frequency limit of the LLL equation. Q. Appl. Math. 74, 633 (2016). arXiv:1509.09080 [math.AP]

    Google Scholar 

  68. Biasi, A.F., Mas, J., Paredes, A.: Delayed collapses of Bose–Einstein condensates in relation to anti-de Sitter gravity. Phys. Rev. E 95, 032216 (2017). arXiv:1610.04866 [nlin.PS]

    Google Scholar 

  69. Biasi, A., Bizoń, P., Craps, B., Evnin, O.: Exact lowest-Landau-level solutions for vortex precession in Bose–Einstein condensates. Phys. Rev. A 96, 053615 (2017). arXiv:1705.00867 [cond-mat.quant-gas]

    Google Scholar 

  70. Gérard, P., Germain, P., Thomann, L.: On the cubic lowest Landau level equation. arXiv:1709.04276 [math.AP]

  71. Fennell, J.: Resonant Hamiltonian systems associated to the one-dimensional non-linear Schrödinger equation with harmonic trapping. arXiv:1804.08190 [math.AP]

  72. Biasi, A., Bizoń, P., Craps, B., Evnin, O.: Two infinite families of resonant solutions for the Gross–Pitaevskii equation. Phys. Rev. E 98, 032222 (2018). arXiv:1805.01775 [cond-mat.quant-gas]

    Google Scholar 

  73. Murdock, J.A.: Perturbations: Theory and Methods. SIAM, Philadelphia (1987)

    Google Scholar 

  74. Kuksin, S., Maiocchi, A.: The effective equation method. In: Tobisch, E. (ed.) New Approaches to Non-linear Waves. Springer, Berlin (2016). arXiv:1501.04175 [math-ph]

    Google Scholar 

  75. Gérard, P., Grellier, S.: The cubic Szegő equation. Ann. Sci. Éc. Norm. Sup. 43, 761 (2010). arXiv:0906.4540 [math.CV]

    Google Scholar 

  76. Gérard, P., Grellier, S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5, 1139 (2012). arXiv:1110.5719 [math.AP]

    Google Scholar 

  77. Gérard, P., Grellier, S.: An explicit formula for the cubic Szegő equation. Trans. Am. Math. Soc. 367, 2979 (2015). arXiv:1304.2619 [math.AP]

    Google Scholar 

  78. Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators. Astérisque 389 (2017). arXiv:1508.06814 [math.AP]

  79. Biasi, A., Bizoń, P., Evnin, O.: Solvable cubic resonant systems. arXiv:1805.03634 [nlin.SI]

  80. Kraichnan, R.H.: Dynamics of nonlinear stochastic systems. J. Math. Phys. 2, 124 (1961)

    Google Scholar 

  81. Bouchaud, J.P., Cugliandolo, L., Kurchan, J., Mezard, M.: Mode coupling approximations, glass theory and disordered systems. Phys. A 226, 243 (1996). [arXiv:cond-mat/9511042]

    Google Scholar 

  82. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181, 39 (2010). arXiv:0808.1742 [math.AP]

    Google Scholar 

  83. Gurau, R., Schaeffer, G.: Regular colored graphs of positive degree. Ann. Henri Poincaré Prob. Stat. D 3, 257 (2016). arXiv:1307.5279 [math.CO]

    Google Scholar 

  84. Dartois, S., Gurau, R., Rivasseau, V.: Double scaling in tensor models with a quartic interaction. JHEP 1309, 088 (2013). arXiv:1307.5281 [hep-th]

    Google Scholar 

  85. Bonzom, V., Gurau, R., Ryan, J.P., Tanasa, A.: The double scaling limit of random tensor models. JHEP 1409, 051 (2014). arXiv:1404.7517 [hep-th]

    Google Scholar 

  86. Młotkowski, W., Penson, K.A.: Probability distributions with binomial moments. Inf. Dimens. Anal. Quantum Probab. 17, 1450014 (2014). arXiv:1309.0595 [math.PR]

    Google Scholar 

  87. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)

    Google Scholar 

Download references

Acknowledgements

We thank Peter Grassberger for a stimulating discussion at the beginning of this project. The work of S.D. was supported by the Australian Research Council Grant DP170102028. O.E. has been funded by CUniverse research promotion project (CUAASC) at Chulalongkorn University. L.L. is a JSPS International Research Fellow. G.V.  is a Research Fellow at the Belgian F.R.S.-FNRS. This project has been initiated during the 2nd Bangkok workshop on discrete geometry and statistics at Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Valette.

Additional information

Communicated by M. Hairer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 3

Proof of Lemma 3

The graph amplitudes can be expressed as

$$\begin{aligned} {\mathcal {A}}_{r}(G)=\frac{1}{N^n} \Bigl (\prod _{v\in {\tilde{{\mathcal {V}}}}} \sum _{S_v}\sum _{j_v, k_v \le S_v}\Bigr ) \Bigl (\prod _{\begin{array}{c} e \text { dashed } \\ \text {or solid} \end{array}} \delta _{j_e j'_e} \Bigr ) \prod _{e\text { dashed} } p^{j_e}. \end{aligned}$$
(137)

We know that for every corner, the corner momentum \(i_c\) (which is \(j_v, S_v-j_v, k_v, S_v - k_v\) for the corresponding node v) is equal to all of the indices of the other corners in the face it belongs to. Indeed, a face consists of edges linking corners, and the constraint on a dashed or solid edge e between two corners c and \(c'\) identifies the corner momenta \(j_e=i_c\) and \(j_e' = i_{c'}\). So if we introduce a new set of indices \(\{i_f\}_{f}\), we can rewrite the constraints on the edges as

$$\begin{aligned} \prod _{\begin{array}{c} e \text { dashed } \\ \text {or solid} \end{array}} \delta _{j_e j'_e} = \Bigl (\prod _{f} \sum _{i_f\ge 0}\Bigr )\Bigl (\prod _f \prod _{c\in f} \delta _{i_f}^{i_c}\Bigr ). \end{aligned}$$
(138)

Indeed, to recover the left hand side, we perform the sums over the \(\{i_f\}\) on the right hand side. For each face, it identifies all of the indices of the visited corners and gives back the constraints on the dashed and solid edges that the face visits. We rewrite (137) as

$$\begin{aligned} {\mathcal {A}}_{r}(G)= & {} \frac{1}{N^n} \Bigl (\prod _{f} \sum _{i_f\ge 0}\Bigr ) \Bigl (\prod _{v\in {\tilde{{\mathcal {V}}}}} \sum _{S_v}\sum _{j_v, k_v \le S_v}\Bigr ) \Bigl (\prod _f \prod _{c\in f} \delta _{i_f}^{i_c}\Bigr ) \prod _{e\text { dashed} } p^{j_e} \end{aligned}$$
(139)
$$\begin{aligned}= & {} \frac{1}{N^n} \Bigl (\prod _f \sum _{i_f}p^{i_f L^\alpha _f}\Bigr )\Biggl [ \Bigl (\prod _{v\in {\tilde{{\mathcal {V}}}}} \sum _{S_v}\sum _{j_v, k_v \le S_v}\Bigr ) \Bigl (\prod _f \prod _{c\in f} \delta _{i_f}^{i_c}\Bigr )\Biggr ], \end{aligned}$$
(140)

where \(L^\alpha _f\) is the number of dashed edges in the face f. We would now like to perform the sums over the \(\{S,j,k\}\), to reduce the term between brackets into a product of Kronecker deltas. This would succeed if we use one delta for each one of the 3n/2 sums. There is exactly one delta per corner. For a given vertex \(v_0\), these four deltas depend only on the three indices \(j_v, k_v\) and \(S_v\), and on some face momenta which are fixed. Therefore, we should be able to reduce the node constraints to a product of deltas.

More precisely, we consider a node \(v_0\) and perform the sums for the two corners \(c_1\) and \(c_3\) for which the corner momenta are \(i_{c_1} = j_{v_0}\) and \(i_{c_3}=k_{v_0}\). This uses one delta each, \(\delta _{i_{f_1}}^{i_{c_1}}\) and \(\delta _{i_{f_3}}^{i_{c_3}}\) (where we shortened the notation \(i^{(a)}_{f,v_0} = i_{f_a}\)), and it means that for the two remaining corners \(c_2\) and \(c_4\) of the node, respectively corresponding to the face momenta \(S_{v_0} - j_{v_0}\) and \(S_{v_0} - k_{v_0}\), the remaining deltas are \(\delta _{i_{f_2}}^{S_{v_0} - i_{f_1}}\) and \(\delta _{i_{f_4}}^{S_{v_0} - i_{f_3}}\). We stress that the condition \(S_{v_0}\ge i_{f_1}, i_{f_3}\) is implemented in the deltas because \(i_{f_2}\) and \(i_{f_4}\) are non-negative. We perform the sum over \(S_{v_0}\), leaving us with a \(\delta _{i_{f_2}}^{i_{f_3} + i_{f_4} - i_{f_1}}\) which we re-arrange as a \(\delta _{i_{f_1} + i_{f_2}}^{i_{f_3} + i_{f_4}}\). We have to be sure that the constraint \(S_{v_0}\ge \max (i_{f_1},i_{f_3})\) is implemented, and this is the case, as \(i_{f_3} + i_{f_4} - i_{f_1}\) is non-negative since \(i_{f_2}\ge 0\) and \(i_{f_3} + i_{f_4}\ge i_{f_3}\) so \(i_{f_3} + i_{f_4}\ge \max (i_{f_1},i_{f_3}) \) and similarly for \(i_{f_1} + i_{f_2}\). The sums corresponding to the vertex \(v_0\) in (140) have been taken care of and we proceed with another vertex. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dartois, S., Evnin, O., Lionni, L. et al. Melonic Turbulence. Commun. Math. Phys. 374, 1179–1228 (2020). https://doi.org/10.1007/s00220-020-03683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03683-7

Navigation