Skip to main content
Log in

Long-term potentiation of evoked presynaptic response at CA3–CA1 synapses by transient oxygen-glucose deprivation in rat brain slices

  • Research Note
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Physiological activity-dependent long-term changes in synaptic transmission, as long-term potentiation (LTP) are thought to be the substrate of learning and memory. However, a form of postsynaptic pathological LTP at the CA3–CA1 synapses has been demonstrated following few minutes of anoxia and aglycemia in vitro. The ischemia LTP shared many molecular mechanisms with the physiological LTP, and was believed to be involved in the delayed neuronal death following ischemia. However, the role of the presynaptic component in this regard is not known. Here we show that a short period of oxygen-glucose deprivation can induce a form of LTP (lasting for hours) of the presynaptic response at the CA3–CA1 synapses. This form of LTP is independent of postsynaptic α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors, but Ca2+ dependent. This presynaptic LTP may represent a presynaptic hyperexcitability of the afferent fibers following ischemia, and responsible for the excitotoxicity to the CA1 neurons (ischemia-induced increases of glutamate release that kills neurons) and the postsynaptic pathological ischemic LTP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ai J, Baker A (2002) Presynaptic hyperexcitability at cerebellar synapses in traumatic injury rat. Neurosci Lett 332:155–158

    Article  PubMed  CAS  Google Scholar 

  • Ai J, Baker A (2004) Presynaptic excitability as a potential target for the treatment of the traumatic cerebellum. Pharmacology 71:192–198

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H, Jorgensen MB, Sandberg M, Christensen T, Hagberg H, Diemer NH (1989) Ischemic damage in hippocampal CA1 is dependent on glutamate release and intact innervation from CA3. J Cereb Blood Flow Metab 9:629–639

    PubMed  CAS  Google Scholar 

  • Calabresi P, Centonze D, Pisani A, Cupini L, Bernardi G (2003) Synaptic plasticity in the ischaemic brain. Lancet Neurol 2:622–629

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23:1261–1276

    Article  PubMed  CAS  Google Scholar 

  • Colmers WF, Lukowiak K, Pittman QJ (1988) Neuropeptide Y action in the rat hippocampal slice: site and mechanism of presynaptic inhibition. J Neurosci 8:3827–3837

    PubMed  CAS  Google Scholar 

  • Crepel V, Hammond C, Krnjevic K, Chinestra P, Ben-Ari Y (1993) Anoxia-induced LTP of isolated NMDA receptor-mediated synaptic responses. J Neurophysiol 69:1774–1778

    PubMed  CAS  Google Scholar 

  • Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465

    Article  PubMed  Google Scholar 

  • Gladstone DJ, Black SE, Hakim AM (2002) Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33:2123–2136

    Article  PubMed  Google Scholar 

  • Johansen FF, Jorgensen MB, Diemer NH (1986) Ischemic CA-1 pyramidal cell loss is prevented by preischemic colchicine destruction of dentate gyrus granule cells. Brain Res 377:344–347

    Article  PubMed  CAS  Google Scholar 

  • Lekieffre D, Meldrum BS (1993) The pyrimidine-derivative, BW1003C87, protects CA1 and striatal neurons following transient severe forebrain ischaemia in rats. A microdialysis and histological study. Neuroscience 56:93–99

    Article  PubMed  CAS  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  • Mitani A, Andou Y, Matsuda S, Arai T, Sakanaka M, Kataoka K (1994) Origin of ischemia-induced glutamate efflux in the CA1 field of the gerbil hippocampus: an in vivo brain microdialysis study. J Neurochem 63:2152–2164

    PubMed  CAS  Google Scholar 

  • Qian J, Saggau P (1999) Modulation of transmitter release by action potential duration at the hippocampal CA3-CA1 synapse. J Neurophysiol 81:288–298

    PubMed  CAS  Google Scholar 

  • Tian GF, Baker AJ (2000) Glycolysis prevents anoxia-induced synaptic transmission damage in rat hippocampal slices. J Neurophysiol 83:1830–1839

    PubMed  CAS  Google Scholar 

  • Wahl F, Obrenovitch TP, Hardy AM, Plotkine M, Boulu R, Symon L (1994) Extracellular glutamate during focal cerebral ischaemia in rats: time course and calcium dependency. J Neurochem 63:1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Weragoda RM, Ferrer E, Walters ET (2004) Memory-like alterations in Aplysia axons after nerve injury or localized depolarization. J Neurosci 24:10393–10401

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Linden DJ (2003) The other side of the engram: experience-driven changes in neuronal intrinsic excitability. Nat Rev Neurosci 4:885–900

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglu Ai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ai, J., Baker, A. Long-term potentiation of evoked presynaptic response at CA3–CA1 synapses by transient oxygen-glucose deprivation in rat brain slices. Exp Brain Res 169, 126–129 (2006). https://doi.org/10.1007/s00221-005-0314-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-005-0314-5

Keywords

Navigation