Skip to main content
Log in

Neural response to sustained affective visual stimulation using an indirect task

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Event-related potentials were recorded from 30 subjects using sustained stimulation and an indirect task, two strategies which facilitate affective responses that are complete and free of cognitive interference. Stimuli were of three types: pleasant, unpleasant and neutral. A three-phase pattern was found. The first phase, an amplitude increase in response to negative stimuli higher than to neutral and pleasant stimuli, was produced at 160 ms after stimulus onset, the prefrontal cortex being the origin of this phase. The second phase, characterized by maximal amplitudes in response to positive stimuli, was produced at 400 ms, originating in the visual cortex. Finally, the third phase, another amplitude increase in response to negative stimuli, was produced at 680 ms, and its source was located in the left precentral gyrus. Present data show that the cortical response to sustained emotional visual stimulation presented within indirect tasks provides information on attention-, motivation- and motor-related biases that complement information obtained under other experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armony JL, Dolan RJ (2002) Modulation of spatial attention by fear-conditioned stimuli: an event-related fMRI study. Neuropsychologia 40:817–826

    Article  PubMed  Google Scholar 

  • Bar M (2003) A cortical mechanism for triggering top–down facilitation in visual object recognition. J Cogn Neurosci 15:600–609

    Article  PubMed  Google Scholar 

  • Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmidt AM, Dale AM, Hämäläinen MS, Marinkovic K, Schacter DL, Rosen BR, Halgren E (2006) Top–down facilitation of visual recognition. Proc Natl Acad Sci USA 103:449–454

    Article  PubMed  CAS  Google Scholar 

  • Cacioppo JT, Gardner WL (1999) Emotion. Annu Rev Psychol 50:191–214

    Article  PubMed  CAS  Google Scholar 

  • Caldara R, Deiber MP, Andrey C, Michel CM, Thut G, Hauert CA (2004) Actual and mental motor preparation and execution: a spatiotemporal ERP study. Exp Brain Res 159:389–399

    Article  PubMed  Google Scholar 

  • Carretié L, Iglesias J, García T, Ballesteros M (1997) N300, P300 and the emotional processing of visual stimuli. Electroencephalogr Clin Neurophysiol 103:298–303

    Article  PubMed  Google Scholar 

  • Carretié L, Martín-Loeches M, Hinojosa JA, Mercado F (2001): Attention and emotion interaction studied through event related potentials. J Cogn Neurosci 13:1109–1128

    Article  PubMed  Google Scholar 

  • Carretié L, Hinojosa JA, Mercado F (2003) Cerebral patterns of attentional habituation to emotional visual stimuli. Psychophysiology 40:381–388

    Article  PubMed  Google Scholar 

  • Carretié L, Hinojosa JA, Martín-Loeches M, Mercado F, Tapia M (2004a) Automatic attention to emotional stimuli: neural correlates. Hum Brain Mapp 22:290–299

    Article  Google Scholar 

  • Carretié L, Tapia M, Mercado F, Albert J, López-Martín S, de la Serna JM (2004b) Voltage-based versus factor score-based source localization analyses of electrophysiological brain activity: a comparison. Brain Topogr 17:109–115

    Article  Google Scholar 

  • Carretié L, Hinojosa JA, Mercado F, Tapia M (2005) Cortical response to subjectively unconscious danger. Neuroimage 26:615–623

    Article  Google Scholar 

  • Cavada C, Compañy T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suárez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cereb Cortex 10:220–242

    Article  PubMed  CAS  Google Scholar 

  • Chapman RM, McCrary JW (1995) EP component identification and measurement by principal components analysis. Brain Cogn 27:288–310

    Article  PubMed  CAS  Google Scholar 

  • Cliff N (1987) Analyzing multivariate data. Harcourt Brace Jovanovich, New York

  • Coles MGH, Gratton G, Kramer AF, Miller GA (1986) Principles of signal acquisition and analysis. In: Coles MGH, Donchin E, Porges SW (eds) Psychophysiology: systems, processes and applications. Elsevier, Amsterdam pp 183–221

    Google Scholar 

  • Coombes SA Cauraugh JH, Janelle CM (2006) Emotion and movement: activation of defensive circuitry alters the magnitude of a sustained muscle contraction. Neurosci Lett 396:192–196

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert BN, Schupp HT, Bradley MM, Birbaumer N, Lang PJ (2000) Brain potentials in affective picture processing: covariation with autonomic arousal and affective report. Biol Psychol 52:95–111

    Article  PubMed  CAS  Google Scholar 

  • Delplanque S, Lavoie ME, Hot P, Silvert L, Sequeira H (2004) Modulation of cognitive processing by emotional valence studied through event-related potentials in humans. Neurosci Lett 356:1–4

    Article  PubMed  CAS  Google Scholar 

  • Dien J, Beal D J, Berg P (2005) Optimizing principal components analysis of event-related potentials: matrix type, factor loading weighting, extraction, and rotations. Clin Neurophysiol 116:1808–1825

    Article  PubMed  Google Scholar 

  • Dierks T, Jelic V, Pascual-Marqui RD, Wahlund L, Julin P, Linden DE, Maurer K, Winblad B, Nordberg A (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824

    Article  PubMed  CAS  Google Scholar 

  • Donchin E, Heffley EF (1978) Multivariate analysis of event-related potential data: a tutorial review. In: Otto D (ed) Multidisciplinary perspectives in event related brain potential research. U.S. Government Printing Office, Washington, DC pp 555–572

  • Duncan-Johnson CC, Donchin E (1977) On quantifying surprise: the variation of event-related potentials with subjective probability. Psychophysiology 14:456–467

    PubMed  CAS  Google Scholar 

  • Fabiani M, Gratton G, Karis D, Donchin E (1987) Definition, identification, and reliability of measurement of the P300 component of the event related brain potential. In: Acles PK, Jennings JR, Coles MGH (eds) Advances in psychophysiology, vol. 2. JAI Press, London pp 1–78

  • Fox E, Lester V, Russo R, Bowles RJ, Pichler A, Dutton K (2000) Facial expressions of emotion: are angry faces detected more efficiently? Cogn Emot 14:61–92

    Article  Google Scholar 

  • Hansen CH, Hansen RD (1988) Finding the face in the crowd: an anger superiority effect. J Pers Soc Psychol 54:917–924

    Article  PubMed  CAS  Google Scholar 

  • Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top–down attentional control. Nat Neurosci 3:284–291

    Article  PubMed  CAS  Google Scholar 

  • Huettel SA, McKeown MJ, Song AW, Hart S, Spencer DD, Allison T, McCarthy G (2004) Linking hemodynamic and electrophysiological measures of brain activity: evidence from functional MRI and intracranial field potentials. Cereb Cortex 14:165–173

    Article  PubMed  Google Scholar 

  • Kawasaki H, Adolphs R, Kaufman O, Damasio H, Damasio AR, Granner M, Bakken H, Hori T, Howard MA (2001) Single neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nat Neurosci 4:15–16

    Article  PubMed  CAS  Google Scholar 

  • Keil A, Bradley MM, Hauk O, Rockstroh B, Elbert T, Lang P (2002) Large-scale neural correlates of affective picture processing. Psychophysiology 39:641–649

    Article  PubMed  Google Scholar 

  • Lang PJ, Greenwald MK, Bradley MM, Hamm AO (1993): Looking at pictures: affective, facial, visceral, and behavioral reactions. Psychophysiology 30:261–273

    PubMed  CAS  Google Scholar 

  • Lang PJ, Bradley MM, Cuthbert BN (2001) International affective picture system (IAPS): Instruction manual and affective ratings. Technical report A-5. The Center for Research in Psychophysiology, University of Florida, Gainesville, FL

  • Northoff G, Richter A, Gessner M, Schlagenhauf F, Fell J, Baumgart F, Kaulisch T, Kötter R, Stephan KE, Leschinger A, Hagner T, Bargel B, Witzel T, Hinrichs H, Bogerts B, Scheich H, Heinze HJ (2000) Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: a combined fMRI/MEG study. Cereb Cortex 10:93–107

    Article  PubMed  CAS  Google Scholar 

  • Ohman A, Flykt A, Esteves F (2001) Emotion drives attention: detecting the snake in the grass. J Exp Psychol Gen 130:466–478

    Article  PubMed  CAS  Google Scholar 

  • Osgood C, Suci G, Tannenbaum P (1957) The measurement of meaning. University of Illinois, Urbana, IL

  • Pahlavan F, Duda D, Bonnet P (2000) Direction of human motor response by men and women to aversive stimulation. Percept Mot Skills 90:415–422

    PubMed  CAS  Google Scholar 

  • Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75–86

    Google Scholar 

  • Pascual-Marqui RD, Michel CM, Lehman D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65

    Article  PubMed  CAS  Google Scholar 

  • Pourtois G, Grandjean D, Sander D, Vuilleumier P (2004) Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cereb Cortex 14:619–633

    Article  PubMed  Google Scholar 

  • Rodríguez M, Muñiz R, González B, Sabaté M (2004) Hand movement distribution in the motor cortex: the influence of a concurrent task and motor imagery. NeuroImage 22:1480–1491

    Article  PubMed  Google Scholar 

  • Russell JA (1979) Affective space is bipolar. J Pers Soc Psychol 37:345–356

    Article  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top–down meets bottom up. Brain Res Rev 35:146–160

    Article  PubMed  CAS  Google Scholar 

  • Schupp HT, Cuthbert BN, Bradley MM, Cacioppo JT, Ito T, Lang PJ (2000) Affective picture processing: the late positive potential is modulated by motivational relevance. Psychophysiology 37:257–261

    Article  PubMed  CAS  Google Scholar 

  • Schupp HT, Junghöfer M, Weike AI, Hamm AO (2003) Emotional facilitation of sensory processing in the visual cortex. Psychol Sci 14:7–13

    Article  PubMed  Google Scholar 

  • Simmons WK, Martin A, Barsalou LW (2005) Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex 15:1602–1608

    Article  PubMed  Google Scholar 

  • Smith CA, Ellsworth PC (1985) Patterns of cognitive appraisal in emotion. J Pers Soc Psychol 48:813–838

    Article  PubMed  Google Scholar 

  • Sokolov EN (1963) Perception and the conditioned reflex. Pergamon Press, Oxford

  • Spencer KM, Dien J, Donchin E (1999) A componential analysis of the ERP elicited by novel events using a dense electrode array. Psychophysiology 36:409–414

    Article  PubMed  CAS  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Thieme, Stuttgart

  • Taylor SE (1991) Asymmetrical effects of positive and negative events. The mobilization–immobilization hypothesis. Psychol Bull 110:67–85

    Article  PubMed  CAS  Google Scholar 

  • Vitacco D, Brandeis D, Pascual-Marqui RD, Martín E (2002) Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Hum Brain Mapp 17:4–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants BSO2002-01980 from the Ministerio de Educación y Ciencia of Spain and 06/HSE/0032/2004 from the Communidad de Madrid. A part of the data described in this article was presented at the IX International Conference on Cognitive Neuroscience (ICON 9; Havana, Cuba, September 2005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Carretié.

Appendix

Appendix

List of the stimuli used in the present experiment, along with their values in Valence (from 1, highly unpleasant, to 9, highly pleasant) and Arousal (from 1, highly relaxing, to 9, highly arousing) as provided by the International Affective Picture System (IAPS; Lang et al. 2001). Stimuli written in italics contained a person, those in regular letters did not (see the text)

Negative

Neutral

Positive

Stimulus (IAPS code)

Valence

Arousal

Stimulus (IAPS code)

Valence

Arousal

Stimulus (IAPS code)

Valence

Arousal

1201

3.55

6.36

2235

5.64

3.36

4659

6.87

6.93

2095

1.79

5.25

2372

5.48

4.09

4669

5.97

6.11

6550

2.73

7.09

2383

4.72

3.41

4687

6.87

6.51

8580

3.7

6.28

2393

4.87

2.93

4800

6.44

7.07

1050

3.46

6.87

7009

4.93

3.01

5480

7.53

5.48

1275

3.3

4.81

7025

4.63

2.71

7230

7.38

5.52

1300

3.55

6.79

7041

4.99

2.6

7270

7.53

5.76

9570

1.68

6.14

7100

5.24

2.89

7289

6.32

5.14

Means

2.97

6.20

 

5.06

3.13

 

6.44

6.09

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carretié, L., Hinojosa, J.A., Albert, J. et al. Neural response to sustained affective visual stimulation using an indirect task. Exp Brain Res 174, 630–637 (2006). https://doi.org/10.1007/s00221-006-0510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0510-y

Keywords

Navigation